• Title/Summary/Keyword: Iron compound

Search Result 179, Processing Time 0.029 seconds

Acid Based Gel Compound의 녹제거 효과

  • 강영구;김정훈
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2003.10a
    • /
    • pp.184-187
    • /
    • 2003
  • 다양한 부식 형태 준 금속부식은 대기중, 수중, 지중, 화학약품 등의 부식환경에 의해 영향을 받는다. 특히 금속 표면의 산화 반응에 의해 생성되는 녹(Rust)은 iron, steel, bronze, aluminium 등의 대상소재를 사용하는 일반 가전제품, 산업공정설비 및 각종 구조물 등에 작용하여 원재료 손상, 내구수명 저하, 구조물 붕괴, 화재 및 폭발위험성 등 대부분 안전사고로 직결되는 것이 일반적이다.(중략)

  • PDF

Heavy Metals in Ambient Air at Shinchon Area in Seoul (도시 대기중 중금속에 관한 연구 -서울시 신촌지역을 중심으로-)

  • Chung, Yong;Jang, Jae-Yeon;Chu, Ui-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.3 no.2
    • /
    • pp.18-26
    • /
    • 1987
  • In order to investigate the character of air pollution by heavy metals and to elucidate the possible sources in Seoul city, this study was performed to measure the concentrations of heavy metals of total suspended particulate and air pollutants such as $SO_2, NO_2, CO, CH_4$, Non-methane hydrocarbon, ozone at the residential-traffic area (shinchon dong) in January and February, 1986. The results are as follows: 1. $SO_2$ and TSP concentration were 135ppb and 167 $\mug/m^3$ in average, respectively. 2. While concentrations of heavy metals such as Fe, Cu, Pb in the ambient air seems gradually decreasing annually, Ni compound has been shown the tendency of increasing. 3. Among heavy metals in TSP analysed, the iron was detected at the highest level, 0.905% and the cadimium was the lowest 0.004% in average, respectively. 4. V, Fe and Zn compounds in air were observed to be highly correlated with their correlation coefficients(r) higher than 0.7. Pb compound was highly correlated to the levels of Zn and Fe, however relatively less correlated to V compound. 5. Among concentrations of heavy metals in the particulates, V and Ni compounds were highly correlated with coefficient(r) of 0.8587; the cause might be imagined by the fact of releasing from combustion of fuel oil. Fe, Pb and Zn compounds were highly correlated $SO_2$ concentration. It might be explained that they were released by combustion of coal. 6. The level of $SO_2$ was highly correlated to most of heavy metals: especially correlation coefficient(r) to Pb compound was 0.9081. Pb compound was also highly correlated to NO, CO and TSP. TSP showed higher correlation to Pb and Cd compounds than to V and Ni compounds. It might be assumed that particulate was mainly produced by combusting coal from space heating and by exhausting gasoline and diesel oil from transportation rather than by burning fuel oil.

  • PDF

A Study on the Development and Application of Perilla Oil Based Compound Wax Agent for Preserving Outdoor Metal Sculpture: A Case Study on Iron Sculptures (들기름 기반 야외 금속 조형물 보존용 혼합 Wax의 개발 및 적용성에 관한 연구: 철제 조형물 중심으로)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.33 no.2
    • /
    • pp.121-130
    • /
    • 2017
  • The currently used wax agents for preserving outdoor metal structures, despite their advantages, have disadvantages such as low endurance and reliability. These wax agents are easily damaged by acid rain, dust, moisture in the air, yellow dust, and air pollutants, resulting in corrosion within a short period after the initial conservation treatment. In addition, aged wax can also exhibit changes in the color or gloss, and also give a sense of difference in the surface. Given these existing problems, it is necessary to develop improved materials for metal preservation. Therefore, this study analyzed the characteristics and applications of the existing wax coating agents in order to identify their disadvantages and to develop a better material for metal preservation. In this regard, this study developed a perilla oil based compound wax and conducted experiments to test its endurance. The new compound wax agent was exposed to outdoor and acid rain conditions: it showed four times and 1.5 times the endurance of the existing wax agents in outdoor and acid rain conditions, respectively. In addition, the new agent seems to be more durable and protective as evidenced by the chromaticity, polish maintenance, and contact angle results. Further, although it is 1.3-1.8 times thicker than the existing agents, the new agent shows a more even surface. Based on these findings, it can be concluded that the new compound wax agent based on perilla oil is a better alternative to the existing was coating agents.

A Study on Iron Compounds of Scoria in Mid Mountain Area of Jeju (제주 중산간지역 스코리아의 철 화합물에 관한 연구)

  • Choi, Won-Jun;Ko, Jeong-Dae
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.205-209
    • /
    • 2007
  • It have been investigated the measured results of the XRF, the X-ray diffractometry and $^{57}Fe\;M{\ddot{o}}ssbauer$ spectrum for scoria samples which are distributed throughout different areas in Mid-mountain Area of Jeju island. We consider that the scoria samples are chiefly made of silicate minerals, like $SiO_2$, others silicate minerals and iron oxides minerals. We study that it's materiel is consisted of olivine, pyroxene, ilmenite, hematite and magnetite. Iron compounds in that are $Fe^{2+}$ of olivine, pyroxene, ilmenite and $Fe^{3+}$ of hematite, magnetite et al. The major Fe fractions of the scoria samples are 51.77 wt%, so Fe fractions of the scoria samples are almost 3+ charge state with a little of the 2+ charge state.

Reductive Degradation Kinetics and Pathways of Chlorophenolic Organic Pollutants by Nickel-Coated Zero Valent Iron (니켈로 코팅된 영가금속을 이용한 염소계 페놀화합물의 반응경로 및 반응율 평가)

  • Shin, Seung-Chul;Kim, Young-Hun;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.487-493
    • /
    • 2006
  • Reductive dechlorination of chlorophenols by nickel coated iron was investigated to understand the feasibility of using Ni/Fe for the in situ remediation of contaminated groundwater. Zero Valent Iron(ZVI) was amended with Ni(II) ions to form bimetal(Ni/Fe). Dechlorination of five chlorophenol compounds and formation of intermediates were examined using Ni/Fe. Rate constant for each reaction pathway was quantified by the numerical integration of a series of differential rate equation. Experimental results showed that the sequence of hydrodechlorination rate constant was in the order of 2-CP>4-CP>2,4-DCP>2,4,6-TCP>2,6-DCP. The hydrodechlorination pathways for the conversion of each chlorophenol compound involves a full dechlorination to phenol via both concerted and stepwise mechanisms. Reaction pathways and corresponding kinetic rate constants were suggested based on the experiments and numerical simulations.

EFFECT OF ADDED Si ON DENSIFICATION OF Ni-AI INTERMETALLIC COATING ON SPHEROIDAL GRAPHITE CAST IRON SUBSTRATES

  • Kim, Tetsuro ata;Keisuke Uenishi;Akira Ikenaga;Kojiro F. Kobayashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.726-731
    • /
    • 2002
  • Reaction synthesis is a process to form ceramics, intermetallics and their composites from elemental powder mixture. Application of this process to a surface modification techniques has a possibilities to enable the process at a lower temperature or for a shorter time, although synthesized materials are likely to include voids and unreacted elements. This paper intend to examine the effect of Si addition to the mixture of Al and Ni on the densification of synthesized Ni-Al intermetallic compounds and to evaluate the surface properties of obtained coatings. By the Si addition, exothermic reaction temperature to form Ni-Al intermetallic was lowered to be below the melting point of Al. Si soluted $Al_3$Ni$_2$, $Al_3$Ni and $Al_{6}$Ni$_3$Si were mainly formed in the coating layer when powder mixture was heated to 973K for 300s. Besides, densification was enhanced by increasing hot press pressure, Si additions and heating rate. When the composition of eutectic Al-Si reaches 78%, void ratio of sintered compact reduced to 0.4%. It is caused by higher flowability of Al-Si liquid phase generated and its infiltration into the void. Since the hardness of NiAl(Si) compound (about 600HV) formed in the coating layer is higher than that of Ni-Al compound (about 400HV), coating layer with high density and superior wear property is obtained by hot press using reaction synthesis from Al-Ni-Si powder mixture.

  • PDF

Effects of Iron and Silicon Additions on the Microstructures and Mechanical Properties of Aluminium Bronze (알루미늄 청동의 미세조직과 기계적 성질에 미치는 Fe 및 Si 첨가의 영향)

  • Kim, Jee-Hwan;Kim, Ji-Tae;Kim, Jin-Han;Park, Heung-Il;Kim, Sung-Gyoo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.6
    • /
    • pp.202-207
    • /
    • 2016
  • The effects of Fe and Si additions on the microstructures and mechanical properties of aluminum bronze have been investigated. In a bar-type specimen cast in a die mold, the addition of Fe promoted the dendritic solidification of the ${\alpha}$ phase. The hardness values increased slightly in the Fe-added specimen with heat treatment, while these values was increased significantly in the specimens with Si or with combined additions of Fe and Si. When a centrifugal casting bush with combined addition of Fe and Si was heat treated, the FeSi compound within the matrix was finely dispersed, and was observed to be the origin of cup-cone type conical dimple failure in the tensile fracture surface. The mechanical properties of the heat treated centrifugal casting bushes, whose nominal alloy compositions were (Cu-7.0Al-0.8Fe-3.0Si)wt%, exhibited tensile strength of $703-781N/mm^2$, elongation of 6.6-11.7% and hardness of Hv 222.6-249.2. These high values of strength and elongation were attributed to the strengthening of the matrix due to the combined addition of Fe and Si, and to precipitation of fine the FeSi compound.

Changes in Phosphorus and Sediment Oxygen Demand in Coastal Sediments Promoted by Functionalized Oyster Shell Powder as an Oxygen Release Compound

  • Kim, Beom-geun;Khirul, Md Akhte;Cho, Dae-chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.851-861
    • /
    • 2019
  • In this study, we performed a sediment elution experiment to evaluate water quality in terms of phosphorus, as influenced by the dissolved oxygen consumed by sediments. Three separate model column treatments, namely, raw, calcined, and sonicated oyster shell powders, were used in this experiment. Essential phosphorus fractions were examined to verify their roles in nutrient release from sediment based on correlation analyses. When treated with calcined or sonicated oyster shell powder, the sediment-water interface became "less anaerobic," thereby producing conditions conducive to partial oxidation and activities of aerobic bacteria. Sediment Oxygen Demand (SOD) was found to be closely correlated with the growth of algae, which confirmed an intermittent input of organic biomass at the sediment surface. SOD was positively correlated with exchangeable and loosely adsorbed phosphorus and organic phosphorus, owing to the accumulation of unbound algal biomass-derived phosphates in sediment, whereas it was negatively correlated with ferric iron-bound phosphorus or calcium fluorapatite-bound phosphorus, which were present in the form of "insoluble" complexes, thereby facilitating the free migration of sulfate-reducing bacteria or limiting the release from complexes, depending on applied local conditions. PCR-denaturing gradient gel electrophoresis revealed that iron-reducing bacteria were the dominant species in control and non-calcined oyster shell columns, whereas certain sulfur-oxidizing bacteria were identified in the column treated with calcined oyster powder.

The Effects of Ginseng Saponin Fraction on Growth and Siderophore Formation in Eseherichia coli K-12 (인삼사포닌 분획이 Escherichia coli K-12의 성장과 Siderophore 생성에 미치는 영향)

  • 조영동;이용범
    • Journal of Ginseng Research
    • /
    • v.7 no.2
    • /
    • pp.102-107
    • /
    • 1983
  • The effects of saponin, one of major components (Panax ginseng C.A. Meyer), on the growth of E. coli K-12 and the formation of siderphore was observed The following results were obtained. 1. When E. coli was grown on medium containing 1${\times}$10-5%-11${\times}$10-1% of the saponin, the rate of growth was stimulated at 10-1% of the saponin significantly compared to that of control. 2. When E. coli K-12 was grown on medium containing 1${\times}$10-1% of the saponin, the amount of siderphore was two times as much as the control. 3. The growth of E. coli was observed to be dependent on the concentration of siderophore when siderophore was added to medium. 4. The effect of saponin on the formation of siderophore in vitro was observed to reach maximum at 1${\times}$10-3% of the saponin. Such results suggest that the growth rate of E. coli K-12 could be enhanced by ginseng saponin fraction through stimulation of siderphore formation. We have described the fast growth of E. coli, K-12 and B. subtilis, rapid uptake of 14C-glucose, and high level of other metabolites such as lipids and proteins of E. coli, and B. subtilis in medium containing saponing fraction compared to that of microorganisms without saponin fraction.1∼3Such differences were claimed to be due to rapid uptake of 14C-glucose by widened periplasmic region throught unknown mechanism in the prescence of saponin fraction in medium3 and have raised a question whether there is another possible factor, siderophore4(Greek for iron bears), since microorganisms must secure a sufficient amount of iron for normal growth. These are known to be synthesized by the cells under iron-deficient condition and in most case, excreted into the medium5, where they can complex and solubilize any iron present there. It is generally believed that these complexes are then taken into the cells presumably by specific transport systems, thus providing iron for cell metabolism. Within the group of enteric bacteria, only three species (E. coli, S. typhimurium, and A. aerogense) have, so far, been studied in a ny detail. The main iron-binding compound produced by these species is enterochelin, and its role in iron transport is now well established. And biosynthesis of enterochelin from 2, 3- dihydroxybenzoate and serine in the prescence of magnesium ions and ATP was reported6. 2, 3-dihydroxybenzoate was also shown to involve isochorismate and 2, 3-dihydro-2, 3-dihydroxybenzoate as intermediate.7∼11 The present paper deals with the effect of ginseng saponin fraction on growth, the level of enterochelin formation in vivo and the conversion of 2, 3-dihydroxybenzoate and serine into entrochelin in vitro, and entrochelin obtained on the growth in relation to possible explanation of ginseng saponin fraction on the rapid growth of E. coli, K-12.

  • PDF

Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook;Yun, Young-Mok
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.