• Title/Summary/Keyword: Iron chloride

Search Result 240, Processing Time 0.023 seconds

Comparison of Fe(III) Coagulants and their Characterization for Water Treatment (수처리용 Fe(III)계 응집제의 특성 및 응집특성 비교)

  • Han, Seung Woo;Kang, Lim Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.169-176
    • /
    • 2016
  • This research explored the feasibility of preparing and utilizing preformed polymeric solution of Fe(III) as coagulants for water treatment. The differentiation and quantification of hydrolytic Fe(III) species in coagulant was done by utilizing spectrophotometric method based on the interaction of Fe(III) with Ferron as a complexing agent. The properties of the synthesized polymeric iron chloride (PICl) showed that the quantity of polymeric Fe(III) produced at r = 1.5 was 20% of the total iron in solution, as showing maximum contents. Coagulation experiments were conducted under the condition of various coagulant doses and pH for each coagulant prepared. From the comparison of the characterization of coagulation for $FeCl_3$ (r = 0.0) and PICl (r = 0.5, 1.0, 1.5) coagulants, PICl (r = 0.5, 1.0, 1.5) coagulants was found to be more effective than other coagulant for the removal of organic matters. The experimental results for the coagulation tests at various pH ranges showed that the PICl was least affected by the coagulation pH and PICl was very effective for the removal of turbidity and organic materials over wide pH range (pH 4-9) tested.

Application of Nanosized Zero-valent Iron-Activated Persulfate for Treating Groundwater Contaminated with Phenol

  • Thao, Trinh Thi;Kim, Cheolyong;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 2017
  • Persulfate (PS) activated with nanosized zero-valent iron (NZVI) was tested as a reagent to remove phenol from groundwater. Batch degradation experiments indicated that NZVI/PS molar ratios between 1 : 2 and 1 : 5 were appropriate for complete removal of phenol, and that the time required for complete removal varied with different PS and NZVI dosages. Chloride ions up to 100 mM enhanced the phenol oxidation rate, and nitrate of any concentration up to 100 mM did not significantly affect the oxidation rate. NZVI showed greater performance than ferrous iron did as an activator for PS. A by-product was formed along with phenol degradation but subsequently was completely degraded, which showed the potential to attain mineralization with the NZVI/PS system. Tests with radical quenchers indicated that sulfate radicals were a predominant radical. The results of this study suggest that NZVI is a promising activator of PS for treating contaminated groundwater.

Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis

  • Butt, Faaz A.;Jafri, Syed M. Mohsin
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.169-176
    • /
    • 2015
  • Iron nanoparticles were made by using the modified coprecipitation technique. Usually the characteristics of synthesised particles depend upon the process parameters such as the ratio of the iron ions, the pH of the solution, the molar concentration of base used, type of reactants and temperature. A modified coprecipitation method was adopted in this study. A magnetic stirrer was used for mixing and the morphology and nature of particles were observed after synthesis. Nanoparticles were characterised through XRD. Obtained nanoparticles showed the formation of magnetite and maghemite under citric acid and oxalic acid as stabilisers respectively. The size of nanoparticle was greatly affected by the use of different types of stabilisers. Results show that citric acid greatly reduced the obtained particle size. Particle size as small as 13 nm was obtained in this study. The effects of different kinds of nucleating agents were also observed and two different types of nucleating agents were used i.e. potassium hydroxide (KOH) and copper chloride ($CuCl_2$). Results show that the use of nucleating agent in general pushes the growth phase of nanoparticles towards the end of coprecipitation reaction. The particles obtained after addition of nucleating agent were greater in size than particles obtained by not utilising any nucleating agent. These particles have found widespread use in medical sciences, energy conservation and electronic sensing technology.

Salmonella Typhimurium SL1344 Utilizing Human Transferrin-bound Iron as an Iron Source Regardless of Siderophore-mediated Uptake (Salmonella Typhimurium SL1344의 사람의 트렌스페린(hTf)에 부착된 철 이용에 관한 연구)

  • Choe, Yunjeong;Yoo, Ah Young;Kim, Sam Woong;Hwang, Jihwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.72-77
    • /
    • 2017
  • Inorganic iron is essential for various metabolic processes, including RNA synthesis, electron transport, and oxygen detoxification in microorganisms. Many bacterial pathogens compete for iron acquisition in diverse environmental condition such as host. Salmonella Typhimurium SL1344 also requires inorganic iron as a cofactor for growth. When a M9 minimal liquid medium was supplemented with ethylenediamine di-o-hydroxyphenylactic acid (EDDA) which acts as an iron-chelating agent, growth of Salmonella Typhimurium SL1344 in the supplemented medium was completely arrested by deficient of useful iron under iron-depleted condition. However, a number of siderophores, which are small, high-affinity iron chelating compounds secreted by microorganisms such as bacteria and fungi, were produced for utilization of restricted iron under iron-depleted condition. A M9 minimal liquid medium complemented with human transferrin (hTf)-iron complex turned completely off production of siderophores, but growth of Salmonella Typhimurium SL1344 maintained level similar to compare one complemented with iron (III) chloride (FeCl3). This means that human transferrin (hTf)-bound iron can utilize via directly interaction with Salmonella Typhimurium SL1344 without productions of siderophores. Through construction and analysis of negative mutant for utilization of human transferrin (hTf)-bound iron, we confirm that the bacterium can directly use human transferrin (hTf)-bound iron without extracellularly intermediated carriers such as siderophores.

Stripping of Ferric Chloride by Mineral Acid Solution from the Loaded Alamine336 Phase (Alamine336에 추출(抽出)된 염화(鹽化) 제 2철(鐵)의 무기산용액(無機酸溶液)에 의한 탈거(奪去))

  • Lee, Man-Seung;Chae, Jong-Gwee
    • Resources Recycling
    • /
    • v.17 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • Stripping experiments of iron from the loaded Alamine336 by sulfurous, chloric and sulfuric acid solutions have been performed by varying the concentration of acid and stripping conditions. The stripping percentage of iron decreased with the increase of HCl and $H_{2}SO_4$ concentration, while that increased with the increase of $H_{2}SO_3$ concentration up to 3 M. Stripping temperature had adverse effect on the stripping percentage of iron in the stripping by $H_{2}SO_3$ solution, while the stripping percentage of iron by HCl solution increased with the increase of temperature. Stripping isotherm of iron by 0.1 M HCl and 0.1 M $H_{2}SO_4$ solution indicated that three and four stripping stages could result in a solution containing 0.05 M iron at an O/A ratio of 1/10 from the loaded Alamine336 phase where iron concentration was 0.5 M.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Application Study of Raman Micro-Spectroscopy for Analysis on Corrosion Compound of Iron Artifacts (철제유물 부식화합물 분석의 표준데이터 확보를 위한 라만 분광법 적용성 연구)

  • Park, Hyung Ho;Lee, Jae Sung;Yu, Jae Eun
    • 보존과학연구
    • /
    • s.32
    • /
    • pp.89-98
    • /
    • 2011
  • It is quite difficult to identify its corrosion compound because they have a wide variety of crystal structures and they are mixed with two component. This study was conducted with the standard iron corrosion compounds through the analysis by Raman Micro-Spectroscopy, which aims to obtain standard Raman Data. To assess the reliability of standard iron corrosion compounds, SEM-EDS analysis and XRD analysis were conducted. Through SEM-EDS analysis, the elements of corrosion compound matched with those of standards iron corrosion compounds except Goethite. XRD analysis showed that the structures of corrosion compounds were identical to those of standard iron corrosion compounds, however, it was identified that Iron sulfate ($FeSO_4{\cdot}6H_2O$) is the Rozenite ($FeSO_4{\cdot}4H_2O$). Through Raman Micro-Spectroscopy analysis, the new peak was detected from the wavenumbers of hydroxide and iron oxide. It is considered that it is due to changes in the wavelength of the laser. As the wavenumbers of iron chloride and iron sulfate have been identified, eight kinds of Raman Data were obtained. It can be considered to contribute to cultral heritage for iron objects that Raman Micro-Spectroscopy analysis which is relatively easy to compare material properties and structures can be highly applicable to the research on cultural heritage with the limited amount of samples.

  • PDF

Ecophysiological Responses and Subsequent Recovery of the Olive Flounder, Paralichthys olivaceus Exposed to Hypoxia and Iron II. Survival, Metabolic and Histological Changes of the Olive Flounder Exposed to Iron (빈산소와 철에 대한 넙치 (Paralichthys olivaceus)의 생태생리적 반응 및 회복 II. 철에 노출된 넙치의 생존, 대사 및 조직학적 변화)

  • KANG Ju-Chan;LEE Jung-Sick;JEE Jung-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.6
    • /
    • pp.699-705
    • /
    • 1999
  • The effects of iron on gill tissue and metabolic rate represented by oxygen consumption of olive flounder, Paralichthys olivaceus were determined. The effects were further studied by means of survival rate of the fish exposed to a serial concentrations of iron. The olive flounder exposed to iron concentrations over 0.93 mg/$\ell$ showed curvature and terminal clubbing of gill lamellae at 2 weeks post-exposure. In iron concentration 4.89 mg/$\ell$, gill of the fish were seriously damaged just after 2 weeks, showing hyperplasia of filament epithelia, deformation of lamella epithelia, chloride cell damage, and separation of lamella epithelial layer, Gills exposed to 9.78 mg/$\ell$ iron concentration resulted in fusion and necrosis of the lamellae after 2 weeks. Significant decreases of metabolic rate of the fish were observed after 4 weeks at iron concentration 0,93 mg/$\ell$ and after 2 weeks at iron concentrations over 4.89 mg/$\ell$. Survival rate of the olive flounder decreased significantly after 4 weeks at the iron concentration over 4.89 mg/$\ell$. These results lead us to conclude that, as far as the iron effects are concerned, its concentrations should not exceed at least more than 0.93 mg/$\ell$ in the fish farm and coastal waters for normal growth of the olive flounder.

  • PDF

Study on the Re-corrosion Characteristics of Corrosion Products by Weeping of Iron Artifacts (철제유물 Weeping에 따른 부식화합물의 재부식 특성 연구)

  • Park, Hyung-Ho;Lee, Hye-Youn;Lee, Jae-Sung;Yu, Jae-Eun
    • Journal of Conservation Science
    • /
    • v.29 no.3
    • /
    • pp.287-296
    • /
    • 2013
  • Excavated iron objects are preserved in stable condition through processes of conservation treatment because they are found in the form of various corrosion products. However, the conservation treatment leads to re-corrosion over time and accordingly, iron objects can be severely damaged, and therefore fundamental measures need to be prepared to control it. In this study, the types and characteristics of corrosion products were scientifically analyzed according to the re-corrosion of iron artifacts. In addition, the stability of the corrosion products was evaluated by exposing the standard samples under the re-corrosion environment. Re-corrosion proceeded with weeping in reddish brown on the cracks of iron artifacts. Weeping was detected akagan$\acute{e}$ite had a low hydrogen ion concentration and high chloride ion. The selection of standard sample goethite, lepidocrocite, hematite, and magnetite, were evaluated corrosive by weeping. After the samples were immersed in HCl(pH 1), $H_2SO_4$(pH 1), $H_2O$(pH 6) solution, they had been maintained for 180 days in relative humidity of 20%, 50%, 80% to investiage the changes of chemical components. As a result of analysis, the changes of chemical components were not showed in goethite, lepidocrocite, and hematite. But magnetite was changed to lepidocrocite in solution including chloride ion($Cl^-$) and to goethite and lepidocrocite solution including sulfuric acid($SO{_4}^{2-}$). Results of the study, in the case of magnetite known as s stable corrosion compound, it was identified the corrosion of magnetite occurs by corrosive ions, which means weeping generated in the iron artifacts can corrode magnetite as well as base metal.

울산지역의 지하수 수질에 관한 통계학적 연구

  • 양운진
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.461-466
    • /
    • 1998
  • One hundred and thirty two ground water samples from the Usan area were divided into urban and non-urban groupings and were assessed between 1993 and 1996. The results of statistical analysis were as follows: There were significant differences between the two groupings in the average value of the following water quality parameters: total hardness, nitrate , pH, iron, ammonia and chloride ion in the order of Z-score . Because total hardness, nitrate, and pH were also significant in ANOVA test, these three parameters can be regarded as the most sensitive parameters of artirial pollutants. By the comprehensive com- parison of Ulsan water Quality to that of Kangwon-do, all of the major parameters(pH, KMnO4 consumption, sulfate, chloride and hardness except nitrated were confirmed as being significantly Increased levels.

  • PDF