• 제목/요약/키워드: Iron Redox Reaction Process

검색결과 6건 처리시간 0.028초

Fenton공정과 철 이온의 전기적 산화·환원 반응을 이용한 공정에서 1,4-Dioxane을 포함하는 산업폐수 처리에 관한 연구 (Treatment of Industrial Wastewater including 1,4-Dioxane by Fenton Process and Electrochemical Iron Redox Reaction Process)

  • 이상호;김판수
    • 상하수도학회지
    • /
    • 제21권4호
    • /
    • pp.375-383
    • /
    • 2007
  • Treatment efficiency research was performed using Fenton process and the electrochemical process in the presence of ferrous ion and hydrogen peroxide for the industrial wastewater including 1,4-Dioxane produced during polymerization of polyester. The Fenton process and the electrochemical Iron Redox Reaction (IRR) process were applied for this research to use hydroxyl radical as the powerful oxidant which is continuously produced during the redox reaction with iron ion and hydrogen peroxide. The results of $COD_{Cr}$ and the concentration of 1,4-Dioxane were compared with time interval during the both processes. The rapid removal efficiency was obtained for Fenton process whereas the slow removal efficiency was occurred for the electrochemical IRR process. The removal efficiency of $COD_{Cr}$ for 310 minutes was 84% in the electrochemical IRR process with 1,000 mg/L of iron ion concentration, whereas it was 91% with 2,000 mg/L of iron ion concentration. The lap time to remove all of 1,4-Dioxane, 330 mg/L in the wastewater took 150 minutes with 1,000 mg/L of iron ion concentration, however it took 120 minutes with 2,000 mg/L of iron ion concentration in the electrochemical IRR process.

산화-환원 싸이클 조업에 의한 고순도 수소생성 (High Purity Hydrogen Production by Redox Cycle Operation)

  • 전법주;박지훈
    • 한국수소및신에너지학회논문집
    • /
    • 제21권5호
    • /
    • pp.355-363
    • /
    • 2010
  • High purity hydrogen, 97-99 vol.%, with CO at just ppm levels was obtained in a fixed bed of iron oxide employing the steam-iron cycle operation with reduction at 823K and oxidation in a steam-$N_2$ mixture at 773K TGA experiments indicated that temperature of the reduction step as well as its duration are important for preventing carbon build-up in iron and the intrusion of $CO_2$ into the hydrogen product. At a reduction temperature of 823K, oxide reduction by $H_2$ was considerably faster than reduction by CO. If the length of the reduction step exceeds optimal value, low levels of methane gas appeared in the off-gas. Furthermore, with longer durations of the reduction step and CO levels in the reducing gas greater than 10 vol.%, carbidization of the iron and/or carbon deposition in the bed exhibited the increasing pressure drop over the bed, eventually rendering the reactor inoperable. Reduction using a reducing gas containing 10 vol.% CO and a optimal reduction duration gave constant $H_2$ flow rates and off-gas composition over 10 redox reaction cycles.

Effect of pH on the Iron Autoxidation Induced DNA Cleavage

  • Kim, Jong-Moon;Oh, Byul-Nim;Kim, Jin-Heung;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1290-1296
    • /
    • 2012
  • Fenton reaction and iron autoxidation have been debated for the major process in ROS mediated DNA cleavage. We compared both processes on iron oxidation, DNA cleavage, and cyclic voltammetric experiment at different pHs. Both oxidation reactions were preferred at basic pH condition, unlike DNA cleavage. This indicates that iron oxidation and the following steps probably occur separately. The ROS generated from autoxidation seems to be superoxide radical since sod exerted the best inhibition on DNA cleavage when $H_2O_2$ was absent. In comparison of cyclic voltammograms of $Fe^{2+}$ in NaCl solution and phosphate buffer, DNA addition to phosphate buffer induced significant change in the redox cycle of iron, indicating that iron may bind DNA as a complex with phosphate. Different pulse voltammogram in the presence of ctDNA suggest that iron ions are recyclable at acidic pH, whereas they may form an electrically stable complex with DNA at high pH condition.

Kinetic Studies on the Reaction of Iron (Ⅲ) with D-penicillamine in Acidic Solution$^1$

  • Hyun-Jae Park;Yung-Hee Oh Kim;Jung-Ae Shim;Sung-Nak Choi
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.444-449
    • /
    • 1993
  • Anaerobic oxidation of D-penicillamine by Fe(III) in acidic solution has been studied kinetically by the use of stopped-flow system. The reaction is biphasic with a rapid complexation of 1: 1 complex, $Fepen^+$ (pen= D-penicillamine dianion) which is then internally reduced to Fe(II) and disulfide. Rates of both the complexation and the redox process are pH dependent and also are affected by the presence of chloride ion. Different from the reaction of Cu(II) with D-penicillamine, partially oxidized mixed-valence complex is not formed even transiently in this reaction.

Morphology-dependent Nanocatalysis: Rod-shaped Oxides

  • Shen, Wenjie
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.130-131
    • /
    • 2013
  • Nanostructured oxides are widely used in heterogeneous catalysis where their catalytic properties are closely associated with the size and morphology at nanometer level. The effect of particle size has been well decumented in the past two decades, but the shape of the nanoparticles has rarely been concerned. Here we illustrate that the redox and acidic-basic properties of oxides are largely dependent on their shapes by taking $Co_3O_4$, $Fe_2O_3$, $CeO_2$ and $La_2O_3$ nanorods as typical examples. The catalytic activities of these rod-shaped oxides are mainly governed by the nature of the exposed crystal planes. For instance, the predominant presence of {110} planes which are rich in active $Co^{3+}$ on $Co_3O_4$ nanorods led to a much higher activity for CO oxidation than the nanoparticles that mainly exposed the {111} planes. The simultaneous exposure of iron and oxygen ions on the surface of $Fe_2O_3$ nanorods have significantly enhanced the adsorption and activation of NO and thereby promoted the efficiency of DeNOx process. Moreover, the exposed surface planes of these rod-shaped oxides mediated the reaction performance of the integrated metal-oxide catalysts. Au/$CeO_2$ catalysts exhibited outstanding stability under water-gas shift conditions owing to the strong bonding of gold particle on the $CeO_2$ nanorods where the formed gold-ceria interface was resistant towards sintering. Cu nanoparticles dispersed on $La_2O_3$ nanorods efficiently catalyzed transfer dehydrogenation of primary aliphatic alcohols based on the uniue role of the exposed {110} planes on the support. Morphology control at nanometer level allows preferential exposure of the catalytically active sites, providing a new stragegy for the design of highly efficient nanostructured catalysts.

  • PDF

$Fe^0$, $Fe^{2+}$, $Fe^{3+}$ / $H_2O_2$ 시스템을 이용한 침출수의 Fenton 산화반응 (Fenton Oxidation of Landfill Leachate by $Fe^0,\;Fe^{2+},\;Fe^{3+}\;/\;H_2O_2$ Systems)

  • 박성호;한인섭
    • 대한환경공학회지
    • /
    • 제27권4호
    • /
    • pp.402-408
    • /
    • 2005
  • Fenton 산화공정을 매립지 침출수에 적용하여 최적의 촉매를 선정하고 최적의 반응조건을 도출하기 위해 Lab scale로 상온에서 실험하였다 본 실험의 연구 결과, 다음의 결과를 얻을 수 있었다. 1) TOC의 제거효율로 최적 pH를 살펴본 결과 $Fe^{2+}$는 pH 3.0, $Fe^{3+}$는 pH 4.5, $Fe^0$는 pH 4.0으로 각각 관찰되었다. 2) 각 촉매별 최적 주입량을 결정하고 반응특성을 살펴보기 위하여 TOC, $COD_{Cr}$, $UV_{254}$를 변수로 보았고, 2가철의 경우 $H_2O_2$ : $Fe^{2+}\;=\;1,200\;mg/L$ : 1,200\;mg/L로 결정되었다 또한 3가철의 경우 $H_2O_2$ : $Fe^{3+}\;=\;1,200\;mg/L$ : 1,200 mg/L, 0가철의 경우 $H_2O_2$ : $Fe^0\;=\;900\;mg/L$ : 1,200 mg/L로 각각 결정되었다. 3) 최적조건에서 3가철($Fe^{3+}$)이 TOC와 $COD_{Cr}$에서 가장 높은 제거효율을 나타냈지만 0가철($Fe^0$)과 큰 제거율 차이를 나타내지 않았다. 이에 따라 경제적인 측면을 고려할 때 0가철($Fe^0$)이 동일한 철염주입량에서 가장 적은 과산화수소 주입량이 필요하므로 상대적으로 우수한 것으로 나타났다. 4) 실험에 적용된 최적 pH를 검증하기 위해 처리수를 pH 중화제(NaOH)로 적정했을 때 각 촉매별로 실험에 사용된 pH가 최적조건임을 확인할 수 있었다. 5) 촉매별로 시간에 따른 redox potential을 사용하여 모든 촉매에 대해 산화반응의 정도 및 반응이 일어나고 있는 계의 산화환원력을 간접적으로 측정할 수 있었다. 이에 따라 실제 Fenton 공정을 적용할 때 "on-line monitoring"의 기초 자료로써 산화환원전위를 활용할 수 있을 것으로 판단된다.