• 제목/요약/키워드: Iron(III)

검색결과 323건 처리시간 0.028초

부선법에 의한 폐수중 철이온의 제거에 관한 기돌 연구 (A Basic Study on the Removal of Iron Ion in Waste Water by the Precipitation Flotation Method)

  • 김형석;조동성;오재현
    • 자원리싸이클링
    • /
    • 제2권2호
    • /
    • pp.1-8
    • /
    • 1993
  • 부선법에 의하여 폐수속에 함유되어 있는 철이온을 제거하기 위한 몇가지 효과적인 포수제와 최적 조건들을 알아본 실험의 결과를 요약하면 다음과 같다. 음이온 포수제인 sodium lauryl sulfate에 의해서 2가와 3가 철은 각각 pH 7과 6에서 효과적으로 제거되었다. 음이온 호수제인 aeropromotor 845에 의해서 2가와 3가철은 모두 pH pH 10~11영역에서, 3가철은 pH4~10영역에서 효과적으로 제거되었따. 따라서, 2가와 3가철은 2가와 3가 철이온침전점 이상으로 단순히 용액의 pH값을 조절하여 수산화철 침전으로 만든 다음 부선법에 의하여 효과적으로 제거된다고 할 수 있다. 그때의 효과적은 pH 조절제는 NaOH와 $Na_2CO_3$였고, 효과적인 포수제는 aeropromotor 845와 trimetyl dodecyl ammomum chloride 이었다.

  • PDF

Cr(VI)으로 오염된 부지의 안정화 기술에 의한 정화 타당성 연구 (Feasibility Study on Stabilization Technique of Cr(VI)-contaminated Site)

  • 윤근석;유종찬;고성환;심명호;조명현;백기태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제22권4호
    • /
    • pp.27-32
    • /
    • 2017
  • In this study, a remedial investigation using reductive stabilization was conducted to treat Cr(VI)-contaminated soil. The influences of various operational parameters, including reaction time and the mass of ferrous iron, were also evaluated. The study site was contaminated with a large amount of Cr(III) and Cr(VI), and the selected treatment method was to stabilize Cr(VI) with ferrous iron, which reduced Cr(VI) to Cr(III) and stabilized the chromium, although a greater mass of ferrous iron than the stoichiometric amount was required to stabilize the Cr(VI). However, some Cr(III) re-oxidized to Cr(VI) during the drying process, and addition of a strong reducing agent was required to maintain reducing conditions. With this reducing agent, the treated soil met the required regulatory standard, and the mass of Cr(III) re-oxidized to Cr(VI) was significantly reduced, compared to the use of only Fe(II) as a reducing agent.

제염 폐액에서 바나듐- 및 철-피콜리네이트 착화물의 평형분배 모사 (Simulation on the Distribution of Vanadium- and Iron-Picolinate Complexes in the Decontamination Waste Solution)

  • 심준보;오원진;김종득
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.33-38
    • /
    • 2005
  • 피콜리네이트 착화제가 들어있는 제염 폐액에서 바나듐 및 철 이온종의 평행분배 거동을 pH 값과 조성이 다른 여러 조건에서 모사하였다. 피콜리네이트 대 바나듐의 몰비를 일정한 값으로 고정하고 금속 이온의 농도를 변화시킬 경우 평행분배 곡선의 형태는 바나듐에 대한 피콜리네이트의 농도가 6배인 고농도 및 3배인 저농도 LOMI 제염 조건의 용액에서 모두 크게 바뀌지 않았다. 그러나 저농도 피콜리네이트 조건의 용액에서는 철(II)-피콜리네이트의 평행분배 곡선의 형태가 많이 변화하였는데, 이와 같은 현상은 용액에 들어있는 철에 대한 피콜리네이트의 상대적인 양이 부족하기 때문에 일어나며 바나듐(III) 및 철(II) 이온종이 피콜리네이트 착화물을 형성하는 안정도 상수(stability constant)의 차이에서 비롯된다. 본 연구에서 구한 평형분배 곡선은 이온교환 조작과 같은 LOMI 제염 폐액의 처리 과정에서 용액의 조건 변화에 따른 반응 현상을 예측하거나 이해하는데 매우 유용하게 활용될 수 있다.

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

철/망간 산화물 피복제를 이용한 오염지하수에서의 As(III)제거 (Removal of As(III) in Contaminated Groundwater Using Iron and Manganese Oxide-Coated Materials)

  • 김주용;최윤형;김경웅;안주성;김동욱
    • 자원환경지질
    • /
    • 제38권5호
    • /
    • pp.571-577
    • /
    • 2005
  • 철산화물 피복 모래를 이용한 투수성 반응 벽체는 As(V)로 오염된 지하수의 처리에 매우 효과적인 것으로 알려져 있다 그러나 이 방법은 As(III)에 있어서는 그 제거효과가 제한적인 실정이다. 본 연구에서는 위 방법에 의한 3가 비소제거의 한계를 극복하기 위해서 As(III)를 As(V)로 산화시킬 수 있는 능력을 가진 망간산화물 피복 물질을 비소저감 촉진제로서, 철산화물 피복 물질을 이용한 처리 기법에 함께 적용하였다. 철산화물 피복 모래와 망간산화물 피복 모래를 함께 이용한 비소제거 방법으로서, 순차 제거법과 동시 제거법이 연구되었다. 두 가지 처리 방법 모두 6시간동안 $85\%$ 이상의 높은 비소제거 효율을 보였으며, 처리과정 동안 흡착제 표면의 철이나 망간의 용해에 의한 2차적인 오염도 일어나지 않았다. 그러나, 동시 제거법은 비소 저감 후 처리수의 산성도를 pH 6.0의 중성상태로 유지하는 반면, 순차 제거법은 처리수를 pH 4.5의 산성상태로 변화시키는 작용을 일으켜, 음용수로서의 이용을 위한 오염 지하수의 비소 저감법으로는 동시 제거법이 적합한 것으로 판정되었다. 보다 높은 As(III) 제거 효과를 위해, 망간 및 철산화물을 폴리프로필렌 섬유에 피복시켜 비소제거에 적용하였다. 폴리프로필렌 섬유는 높은 표면적과 낮은 비중의 특성을 가진, 신축성 있는 스폰지와 같은 저렴한 중합체의 일종이다. 이를 이용한 비소 제거법은 피복모래를 이용한 방법보다 월등히 뛰어난 $99\%$ 이상의 높은 비소제거 효율을 나타내었다. 또한, 피복 폴리프로필렌 섬유를 이용한 방법은 비소에 오염된 물의 음용수로의 이용을 위한 간편한 처리기법으로서 적용하기에 좋은 많은 실용적인 장점들을 가지고 있다.

초경 전후 사춘기 여성의 철 영양에 관한 연구 (Iron Status of the Adolescent Females before and after Menarche)

  • 임현숙;정은숙
    • Journal of Nutrition and Health
    • /
    • 제36권6호
    • /
    • pp.646-652
    • /
    • 2003
  • This study was performed to determine the iron status of the adolescent Korean girls before and after menarche. The 101 subjects aged 11-13 years who attending in an elementary school in Mokpo were recruited. They were divided into pre-menarche (A) group or post-menarche (B) group based on their menstruation status. The latter subjects were sub-divided into one of the four groups according to the times of their menstruation B-I( $\geq$ 3 times), B-II (4-6 times), B-III (7-9 times) or B-W ( $\geq$ 10 times). In the total subjects, dietary iron intake, 11.3 mg/day, was below the Korean RDA for iron, the percentage of heme iron to total iron intake, 15%, and the bioavailability of dietary iron, 12.3%, seemed to be low. And their body iron storage, 140.8 mg, seemed to be insufficient. However, they tended to meet body's iron requirement in the cell level. Red blood cell number (RBC), hematocrit (Hct), and hemoglobin (Hb) level in the total subjects were 4.5 1012/I, 39.3%, and 13.0 g/㎗, respectively. The subjects in B group had lower (p<0.05) RBC and Hct compared to those in A group and the prevalence of iron-deficiency anemia tended to be high. Serum iron, ferritin, and soluble transferrin receptor (sTfR) and sTfR:ferritin ratio were 86.7 $\mu\textrm{g}$/d, 17.6 $\mu\textrm{g}$/l, 3.58 mg/1, and 230, respectively. Those four indices were not significantly different among the groups. The results of this study imply that, although there a tendency to affect negatively iron status, menstrual blood loss in adolescent females does not deteriorate obviously their iron status during the relatively short period up to 1 you. However, it should be better to improve their iron status after starting menarche by increasing iron intake, especially heme-iron, and enhancing factors for iron absorption.

Innovative Remediation of Arsenic in Groundwater by Nano Scale Zero-Valent Iron

  • Kanel, Sushil-Raj;Kim, Ju-Yong;Park, Heechul
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.87-90
    • /
    • 2003
  • This research examines the feasibility of using laboratory-synthesized nano scale zero-valent iron particles to remove arsenic from aqueous phase. Batch experiments were performed to determine arsenic sorption rates as a function of the nano scale zero-valent iron solution concentration. Rapid adsorption of arsenic was achieved with the nano scale zero-valent iron. Typically 1 mg $L^{-1}$ arsenic (III) was adsorbed by 5 g $L^{-1}$ nano scale zero-valent iron below the 0.01 g $L^{-1}$ concentration within 7min. The kinetics of the arsenic sorption followed pseudo-first-order reaction kinetics. Observed reaction rate constants ( $K_{obs}$) varied between 11.4 to 129.0 $h^{-1}$ with respect to different concentrations of nano scale zero-valent iron. A variety of analytical techniques were used to study the reaction products including HGAAS (hydride generator atomic adsorption spectrophotometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy). Our experimental results suggest novel method for efficient removal of arsenic Iron groundwater.r.

  • PDF

난분해성 후렉소잉크 폐수중 유기물 및 색도제거를 위한 철촉매 공기산화 공정의 적용 (Application of Iron-Catalyzed Air Oxidation Process for Organics and Color Removals in Recalcitrance Flexographic Inks Wastewater)

  • 조용덕;윤현희;박상준;김종성;이상화
    • 상하수도학회지
    • /
    • 제20권4호
    • /
    • pp.487-498
    • /
    • 2006
  • The oxidation processes of metal catalysis were practically applied into the flexographic inks wastewater treatment to derive the most effective and economical system among all the processes of iron-salts coagulation, iron-catalyzed air oxidation, and coagulation followed by biological treatment. The iron concentration and pH were optimized as $2.8{\times}10^{-3}mol$ and 5.5~6.0, respectively, for all the oxidation processes. At the optimal reaction conditions, the removal efficiencies of $TCOD_{Mn}$ and Color were as follows for the respective process: i) 75% $TCOD_{Mn}$ and 77% Color removals for iron-salts coagulation, ii) 91% TCODMn and 90% Color removals for iron-catalyzed air oxidation, iii) 74~92% $TCOD_{Mn}$ and 81~90% Color removals for coagulation followed by biological treatment. Based on the economical and technological aspects, iron-catalyzed air oxidation was confirmed as the most effective process in the treatment of industrial wastewater.

Synthesis and Spectroscopic Characterization of Manganese(II), Iron(III) and Cobalt(III) Complexes of Macrocyclic Ligand. Potential of Cobalt(III) Complex in Biological Activity

  • El-Tabl, Abdou S.;Shakdofa, Mohamad M.E.;El-Seidy, Ahmed M.A.
    • 대한화학회지
    • /
    • 제55권6호
    • /
    • pp.919-925
    • /
    • 2011
  • A new series of manganese(II), iron(III) and cobalt(III) complexes of 14-membered macrocyclic ligand, (3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane-1,8-diamine) have been prepared and characterized by elemental analyses, IR, UV-VIS, $^1H$- and $^{13}C$- NMR spectra, magnetic susceptibilities, conductivities, and ESR measurements. Molar conductance measurements in DMF solution indicate that the complexes are electrolytes. The ESR spectrum for cobalt(III) complex in $CD_3OD+10%D_2O$ after exposure to $^{60}Co-{\gamma}$-rays at 77 K using a 0.2217 M rad $h^{-1}$ vicrad source showed $g_{\perp}$ > $g_{\parallel}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_z2$ orbital with covalent bond character. In this case, the ligand hyperfine tensors are nearly collinear with ${\gamma}$-tensors, so there is no major tendency to bend. Therefore, little extra delocalization via the ring lobe of the $dz^2$ orbital occurs. However, the ESR spectrum in solid state after exposure to $^{60}Co-{\gamma}$-rays at 77 K showed $g_{\parallel}$ > $g_{\perp}$ > $g_e$, indicating that, the unpaired electron site is mainly present in the $d_x2_{-y}2$ ground state as the resulting spectrum contains a large number of randomly oriented molecules provided that, the principle directions of g and A tensors. Manganese (II) complex 2, $[H_{12}LMn]Cl_4.2H_2O$, showed six isotropic lines characteristic to an unpaired electron interacting with a nucleus of spin 5/2, however, iron(III) complex 3, $[H_{12}LFe]Cl_5.H_2O$, showed spectrum of a high spin $^{57}Fe$ (I=1/2), $d^5$ configuration. The geometry of these complexes was supported by elemental analyses, IR, electronic and ESR spectral studies. Complex 1 showed exploitation in reducing the amount of electron adducts formed in DNA during irradiation with low radiation products.

Effect of trace amount of ferrous and ferric ions on the dissolution of iron plate in magnetically treated 3% sodium chloride solution

  • Chiba, Atsushi;Ohki, Tomohiro;Wu, Wen-Chang
    • Corrosion Science and Technology
    • /
    • 제4권2호
    • /
    • pp.45-50
    • /
    • 2005
  • A 3% NaCl solution of 1 $dm^3$ circulated with 1.5 $dm^3/min$ by a pump for 24 h in the presence of magnetic field. An iron plate immersed in a $100cm^3$ of test solution for 24 h. The rest potential and pH on surface fixed after 3 h. Containing 0~120 ppm of Fe(II) ion, the dissolution in the magnetically treated solution rose comparing with that in the non-magnetically treated solution. The dissolution amount reached to maximum at 50 ppm, then fixed in the non-magnetically treated solution. When Fe(II) ion existed in the magnetically treated solution, dissolution accelerated a little. In the non-magnetic treated solution containing 10~125 ppm of Fe(III) ion existed, the dissolution accelerated. The dissolution amounts reached to maximum at 50 ppm, then decreased from maximum value. In the magnetically treated solution, the dissolution amounts reached to minimum until 50 ppm, then increased from minimum value. The dissolution amounts affected larger with increasing of magnetic flux density. Fe(II), Fe(III) ions and magnetic treatment affected to formation of $Fe(OH)_2$ and/or $Fe_3O_4$ films. The magnetically treated effects memorized about one month.