• Title/Summary/Keyword: Iron(III)

Search Result 323, Processing Time 0.024 seconds

Synthesis and Characterization of Mononuclear Octahedral Fe(III) Complex Containing a Biomimetic Tripodal Ligand, N-(Benzimidazol-2-ylmethyl)iminodiacetic Acid

  • Moon, Do-Hyun;Kim, Jung-hyun;Lah, Myoung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.10
    • /
    • pp.1597-1600
    • /
    • 2006
  • The mononuclear iron complex 1, $Fe^{III}$(Hbida)Cl($H_2O$), was synthesized using a tripodal tetradentate ligand, N-(benzimidazol-2-ylmethyl)iminodiacetic acid (H3bida), which has two carboxylate groups, one benzimida- zoyl group, and one tertiary amine where it serves as a tetradentate chelating ligand for the octahedral Fe(III) ion. The four equatorial positions of the octahedral complex are occupied by two monodentate carboxylates, a benzimidazole nitrogen, and an oxygen of a water molecule. One of the axial positions is occupied by an apical nitrogen of the Hbida and the other by a chloride anion. The mononuclear octahedral complex 1 mimics the geometry of the key intermediate structure of the catalytic reaction cycle proposed for the FeSODs, which is a distorted octahedral geometry with three histidyl imidazoles, an aspartyl carboxylate, a superoxide anion, and a water molecule. The redox potential of complex 1, $E_{1/2}$ is -0.11V vs. Ag/AgCl (0.12 V vs. NHE), which is slightly lower than those reported for the most FeSODs. The magnetic susceptibility of complex 1 at room temperature is 5.83 $\mu$B which is close to that of the spin only value, 5.92 $\mu$B of high-spin d5 Fe(III).

Biochemical studies of the siderophore A3 produced by pseudomonas synxantha A3 (Pseudomonas synxantha A3가 생성하는 siderophore A3에 관한 연구)

  • 전홍기;강호영;고철종;백형석
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.307-313
    • /
    • 1991
  • A yellow-green, fluorescent siderophore A3 was extracellularly produced under iron-limited growth conditions from Pseudomonas synxantha A3. The physicochemical and biological properties of siderophore A3 were examined. The approxiamte molecular weights of the Fe(III)-siderophore A3-1 complex and Fe(III)-siderophore A3-2 complex were estimated to be about 1,300 and 1,100, respectively, by Bio-gel P2 gel exclusion chromatography. The molar ratio between the siderophore and the Fe(III)was 1.08 mole. The molecular weight of the complex could be calculated with this ratio and the new values were 1,150 and 960, respectively. The binding constant(K) between thesiderophore A3 and Fe(III) that determined by displacing the iron from the Fe(III)-siderophore complex with EDTA was 4.12*10$^{18}$ at pH 5.0. Siderophore A3 appeared to have antibacterial activity on several bacterial strains, however, ferric siderophore Ae complex did not show that activity. The cytotoxicity of siderophore A3 was obtained from Human Chronic Myelogenous Leudemia K562 cells. Inhibition concentration (50%)($IC_{50}$ ) was $0.17\mu$\{g/ml}.

  • PDF

Effects of Natural Organic Matter (NOM) on Cr(Ⅵ) reduction by Fe(II) (Fe(II)을 이용한 Cr(Ⅵ) 환원시 천연유기물의 영향)

  • 한인섭
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.81-84
    • /
    • 1999
  • The aqueous geochemical characteristics of Cr(III) and Cr(Ⅵ) in environmental systems are very different from one another: Cr(Ⅵ) is highly soluble, mobile and toxic relative to Cr(III) Reduction of Cr(Ⅵ) to Cr(III) are beneficial in aquatic systems because of the transformation of a highly mobile and toxic species to one having a low solubility in water, thus simultaneously decreasing chromium mobility and toxicity. Fe(II) species are excellent reductants for transforming Cr(Ⅵ) to Cr(III), and in addition, keeping Cr(III) concentrations below the drinking water standard of 52 ppb at pH values between 5 and 11. Investigations of the effects of NOM on Cr(Ⅵ) reduction are for examining the feasibility of using ferrous iron to reduce hexavalent chromium in subsurface environments. Experiments in the presence of soils, however, showed that the solid phase consumes some of the reducing capacity of Fe(II) and makes the overall reduction kinetics slower. The soil components bring about consumption of the ferrous iron reductant. Particular attention is devoted to the complexation of Fe(II) by NOM and the subsequent effect on Cr(Ⅵ) reduction. Cr(Ⅵ) reduction rate by Fe(II) was affected by the presence of NOM (humic acid), The effects of humic acid was different from the solution pH values and the concentration of humic acid. It was probably due to the reactions between humic acid and Cr(Ⅵ), humic acid and Fe(II), and between Cr(Ⅵ) and Fe(II), at each pH.

  • PDF

Crystal Packing of Two Different Tetranuclear Iron(III) Clusters, [(tacn)4Fe4O2(OH)4]2.8Br.9H2O (tacn = 1,4,7-triazacyclononane)

  • Jin, Mi-Kyung;Kim, Yoo-Jin;Jung, Duk-Young;Heu, Min;Yoon, Seok-Won;Suh, Byoung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.253-259
    • /
    • 2005
  • [$(tacn)_4Fe_4O_2(OH)_4]_2{\cdot}8Br{\cdot}9H_2O$ (tacn = 1,4,7-triazacyclononane), a tetranuclear iron(III) complex was synthesized by the hydrolysis of (tacn)FeCl3 and crystallizes in the orthorhombic space group, Pca2(1), with cell parameters, a = 37.574(3) $\AA$, b = 16.9245(12) $\AA$, c = 14.2830(11) $\AA$, V = 9082.9(12) ${\AA}^3$. [$(tacn)_4Fe_4O_2(OH)_4]^{4+}$ cations approach S4 point symmetry containing an adamantane skeleton. Four Fe(III) atoms have distorted octahedral environments with two hydroxo and an oxo bridges. Two [$(tacn)_4Fe_4O_2(OH)_4]^{4+}$ clusters having different Fe…Fe distances are connected to each other by the networked hydrogen bonds. The electrochemical behavior reveals irreversible three cathodic and two anodic peaks. Magnetic properties are characterized by antiferromagnetic (AF) interactions between Fe(III) ion spins. However, the low-lying states are still magnetic and exhibit a blocking behavior and a magnetic hysteresis at low temperatures.

A Fiber Optic Sensor for Determination of 2,4-Dichlorophenol Based on Oxygen Oxidation Catalyzed by Iron(III) Tetrasulfophthalocyanine

  • Tong, Yilin;Li, Dapeng;Huang, Jun;Zhang, Cong;Li, Kun;Ding, Liyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3307-3311
    • /
    • 2013
  • A new fiber optical sensor was developed for the determination of 2,4-dichlorophenol (DCP). The sensor was based on DCP oxidation by oxygen with the catalysis of iron(III) tetrasulfophthalocyanine (Fe(III)PcTs). The optical oxygen sensing film with $Ru(bpy)_3Cl_2$ as the fluorescence indicator was used to determine the consumption of oxygen in solution. A lock-in amplifier was used for detecting the lifetime of the oxygen sensing film by measuring the phase delay change of the sensor head. The different variables affecting the sensor performance were evaluated and optimized. Under the optimal conditions (i.e. pH 6.0, $25^{\circ}C$, Fe(III)PcTs concentration of 0.62 mg/mL), the linear detection range and response time of the sensor are $1.0{\times}10^{-6}-9.0{\times}10^{-6}$ mol/L and 250 s, respectively. The sensor displays high selectivity, good repeatability and stability, and can be used as an effective tool in analyzing DCP concentration in practical samples.

The Use of Iron Supplements of Pregnant Women and Pregnancy Outcome (임신부의 철분 보충제 사용과 임신결과)

  • Cho, Ji-Hyun;Ahn, Hong-Seok;Bae, Hyun-Sook
    • Korean Journal of Community Nutrition
    • /
    • v.14 no.3
    • /
    • pp.327-339
    • /
    • 2009
  • It is known that Korean pregnant women take iron supplements at a higher than the recommended level. This study was designed to provide data on current iron intake levels both from food sources and supplement to better guide iron supplement use during pregnancy. We also explored associations of iron supplement intake levels with various sociocultural factors and pregnancy outcomes. Dietary intakes of 510 pregnant women were assessed by a validated 102-item food frequency questionnaire, and information on types and amounts of nutritional supplement intakes were also attained. While dietary intake levels of most nutrients exceeded the KDRIs (Korea Dietary Reference Intakes: EAR: Estimated Average Requirements), folate fell short of the KDRIs. A total of 428 women (83.9%) reported to take iron supplement. The pregnant women were divided into the three groups (group I: Fe supplement intake ${\le}$ EAR, group II: EAR < Fe supplement intake ${\le}$ 3 times of EAR, group III: 3 times of EAR < Fe supplement intake). The mean dietary intake of iron was 24% of the total iron intake for pregnant women. Iron intake from food was not significantly different among I, II, and III. In case of iron intake from supplements, the most frequent dose (34.1%) was 90-100 mg/day, and the mean iron supplement intake was 362% of the EAR. The study findings showed that those with higher levels of iron supplements had better meal quality measured by NAR (Nutrient Adequacy Ratio) and INQ (Index of Nutrient Quality). In addition iron supplement intake levels were significantly related to age (20s: 66.5 ${\pm}$ 38.6 mg/day, 30s: 77.3 ${\pm}$ 47.8 mg/day, p < 0.0116) and experience of childbirth (1st pregnancy: 70.9 ${\pm}$ 41.2 mg/day, 2nd pregnancy: 64.5 ${\pm}$ 39.5 mg/day, ${\ge}$ 3rd pregnancy: 94.4 ${\pm}$ 63.8 mg/day, p < 0.005). However, no significant difference was found between iron supplement intake levels and various pregnancy outcomes including birth weight, birth height, gestational age, weight gain during pregnancy, and jaundice. It is worrisome that iron intake by supplement use greatly exceeded the EAR, suggesting the need of appropriate guidelines for iron supplement intake during pregnancy. Thus iron overdose from supplements in pregnancy should be considered as a serious condition.

METHANOGENIC FERMENTATION OF FAT-CONTAINING WASTEWATER MEDIATED BY IRON

  • Zubair, A.;Ivanov, V.;Kim, In-S.
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.109-112
    • /
    • 2000
  • Long chain fatty acids (LCFA) are potential inhibitors of bacteria involved in anaerobic digestion because of their surface activity. Precipitation of long-chain fatty acids with iron can improve the anaerobic degradation due to their precipitation and reducing surface properties. Degradation of stearic acid was improved in the presence of iron (II). The methane production was increased 1.6 times as compared to control. Iron-containing soil was applied for degradation of vegetable oil as model case. The methane production was increased 1.5 times as compared to control. Yield of methane production was 0.09 and 0.06L/g COD in experiment and control respectively. Optimum COD/Fe ratio was found 20 mg/mg. Iron (II) can be produced in the treatment system from iron (III) hydroxide or iron containing minerals.

  • PDF

Solvent Effects on the Charge Transport Behavior in Poly(3,4-ethylenedioxythiophene) Synthesized with Iron (III) -p-toluenesulfonate (Iron(III)-p-toluenesulfonate로 합성된 Poly(3,4-ethylenedioxythiophene)의 전하전달현상에 미치는 유기용매의 영향)

  • Park, Chang-Mo;Kim, Tae-Young;Kim, Won-Jung;Kim, Yun-Sang;Suh, Kwang-S
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.363-367
    • /
    • 2005
  • The effects of organic solvent on the charge transport behavior of poly (3,4-ethylenedioxythioph one)/p-toluene-sulfonate(PEDOT-OTs) are investigated. The use of different organic solvents during the oxidative chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) with Iron(III) -tosylate can greatly vary the DC conductivity of PEDOT-OTs along with molecular structure and doping concentration. For example, PEDOT-OTs prepared from methanol shows the conductivity of 19.5 S/cm, which is an increase by a factor of $10^8$ compared to PEDOT-OTa prepared from acetone. From the X-ray diffraction (XRD) experiments, it was found that PEDOT-OTs with ketone is amorphous state, while PEDOT-OTs with alcoholic solvent shows the better defined crystalline structure in which the charge transport along and between the PEDOT chains are promoted. Chemical analysis employing X-ray photoelectron spectroscopy (XPS) revealed that the doping concentration of PEDOT-OTs with alcoholic solvent is much higher than that of PEDOT-OTs with ketones. It is proposed that the interactions between the organic solvent and doping anion can cause the variation in doping concentration and, therefore, result in the PEDOT-OTs of different conductivities and chain structures.

A comparative study on applicability of nano-sized iron(II, III) oxide in ultrasonicated Fenton process

  • Sahinkaya, Serkan;Yakut, Sennur Merve
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • Fenton process is one of the most effective advanced oxidation processes for the removal of pollutants from wastewater. In this study, while ferrous iron was used in conventional Fenton process (CFP); nano-sized iron(II, III) oxide was experienced in modified Fenton process (MFP) as a new catalyst alternative. In order to enhance their oxidation efficiencies, both CFP and MFP were combined with ultrasonication at 53 kHz fixed frequency. Thus, the influences of both catalyst iron species and ultrasonication on color and chemical oxygen demand (COD) removals from synthetic textile wastewater including Maxilon Red GRL 200% dyestuff were investigated experimentally. While the COD and color removal rates were found as 72.5% and 69.7% via CFP; they were 87% and 75.8% by ultrasonicated CFP, respectively. The color and COD removals were 40.6% and 64.8% via MFP, and 49.9 and 73.1% by ultrasonicated MFP, respectively. Therefore, it was found that the simultaneously usage of ultrasonication with CFP and MFP was improved the COD and color removal efficiencies and oxidation rates even at lower H2O2 dosages, compared to individual CFP and MFP. Moreover, the color and COD removal kinetics were also modelled mathematically and compared in the study.

Removal of Nitrate from Groundwater using Zero-valent Iron-modified Biochar (영가철 개질 바이오차를 이용한 지하수의 질산성 질소 제거)

  • Han, Eun-Yeong;Kim, Hye-Bin;Kim, Jong-Gook;Shin, Dong-Hun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.28-34
    • /
    • 2020
  • Nitrate released from chemical fertilizer, animal wastes, and synthetic detergents can cause methemoglobinemia to infants, thus the standard in drinking water is set to 10 mg/L as World Health Organization recommended. In this study, zero-valent iron-modified rice straw biochar was used to reduce and remove nitrate in the aqueous phase. The rice straw biochar was prepared by pyrolyzing the biomass at 700℃ for 3 hours, and the biochar was modified using 1 M Fe(III), and the Fe(III) on the biochar was reduced to zero-valent iron using sodium borohydride. The modified biochar removed nitrate effectively, which removed more than 91% of nitrate. For the synthetic groundwater, the nitrate removal was lowered to 82% due to the presence of other anions.