• Title/Summary/Keyword: Iridescent color

Search Result 6, Processing Time 0.018 seconds

Bio-inspired Structural Colors of Transparent Substrate based on Light Diffraction and Interference on Microscale and Nanoscale Structures (자연모사기반 나노-마이크로패턴의 광 회절 및 간섭에 의한 투명기판의 구조색 구현)

  • Park, Yong Min;Kim, Byeong Hee;Seo, Young Ho
    • Journal of Industrial Technology
    • /
    • v.39 no.1
    • /
    • pp.33-39
    • /
    • 2019
  • This paper addresses effects of nanoscale structures on structural colors of micropatterned transparent substrate by light diffraction. Structural colors is widely investigated because they present colors without any chemical pigments. Typically structural colors is presented by diffraction of light on a micropatterned surface or by multiple interference of light on a surface containing a periodic or quasi-periodic nano-structures. In this paper, each structural colors induced by quasi-periodic nano-structures, periodic micro-structures, and nano/micro dual structures is measured in order to investigate effects of nanoscale and microscale structures on structural colors in the transparent substrate. Using pre-fabricated pattern mold and hot-embossing process, nanoscale and microscale structures are replicated on the transparent PMMA(Poly methyl methacrylate) substrate. Nanoscale and microscale pattern molds are prepared by anodic oxidation process of aluminum sheet and by reactive ion etching process of silicon wafer, respectively. Structural colors are captured by digital camera, and their optical transmittance spectrum are measured by UV/visible spectrometer. From experimental results, we found that nano-structures provide monotonic colors by multiple interference, and micro-structures induce iridescent colors by diffraction of light. Structural colors is permanent and unchangeable, thus it can be used in various application field such as security, color filter and so on.

Iridescent Specular Structural Colors of Two-Dimensional Periodic Diffraction Gratings

  • Yoon, Kyungsik;Choi, Sujin;Paek, Jeongyeup;Im, Dajeong;Roh, Jinyoung;Kwon, Jaebum;Kim, Hwi
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.616-622
    • /
    • 2014
  • Specular structural colors generated by two-dimensional periodic binary gratings are investigated theoretically. An approximate mathematical model of the grating specular structural colors is described, based on scalar nonparaxial diffraction theory, and the functional relationships of specular structural color and structural parameters of gratings are analyzed. Through this, the optimal condition for maximizing the color-representation range in the standard CIE 1931 chromaticity diagram is derived.

A Study on the Color Change in a Union Fabric simulated using a 3-dimensional CAD Software and Image Analysis

  • Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.10 no.6
    • /
    • pp.9-15
    • /
    • 2006
  • Colors of textile products or fashionable clothing play one of the most important roles. From the point of visual cues, the realism of an image is the result of a good interaction of local light scattering or transmittance model applied. A 3-dimensional CAD software was used to construct a solid plain fabric model. In order to simulate a union fabric with different warp and filling colors, rendering was performed on the fabric model. It was demonstrated that the iridescent effect, pearl effect, or superficial color change effect of the union fabric during wearer's movement could be explained using the fabric models at inclined fabric positions during viewer's observation.

Color Adjustment Study by Micro-Pattern Embedding in Optical Multilayer Thin Film (다층광학필름에서 마이크로패턴 삽입을 통한 색 조정 연구)

  • Kim, Min;Woo, Ju Yeon;Yoon, Junho;Hwangbo, Chang Kwon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.409-417
    • /
    • 2016
  • It is well known that Morpho butterflies show distinctive, brilliant and iridescent colors and have micro-nano scale structures, instead of dyes and pigments, on their wings. This structural coloration is regarded as a novel technique to express color with a long lifetime, ease and precise tenability. Here, we studied optical multilayer thin films with thickness of several tens of nm ($TiO_2$ and $SiO_2$) and lens-shape micro-patterns. Fabrication and characterization of the multilayer stacking structure and the micro-pattern structure were performed and the films were analyzed via several optical measuring techniques. Finally, we discussed how the micro-pattern structure could enhance independence with color changes according to the viewing angle.

Design of Bio-Inspired Morpho Butterfly Structures for Optical Sensor Applications (광학 센서 응용을 위한 모르포 나비 날개 모방 구조 설계)

  • Kim, Hyeon Myeong;Lee, Gil Ju;Kim, Min Seok;Kim, Kyu Jung;Song, Young Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.5
    • /
    • pp.357-362
    • /
    • 2016
  • Various species of insects display vivid colors, widely known as 'structural color' due to their optical interference. Morpho butterflies are famous for their brilliant iridescent colors, which arise from the photonic-nanostructures of optical interference on their wings. In this paper, we outline the results of a comparative study of the optical properties of bio-inspired Morpho butterfly structures with the widely known Distributed Bragg Reflector (DBR), conducted using a rigorous coupled-wave analysis (RCWA) method for the two structures. Almost analogous tendencies were observed for both Morpho and DBR structures. With variation in the surrounding media, however, Morpho structures showed an obvious peak shift while no significant changes were observed in DBR, which can be applicable.