• Title/Summary/Keyword: Ir-192

Search Result 157, Processing Time 0.026 seconds

Quality Assurance of Air Kerma Strength for Ir-192 High Dose Rate Source (Ir-192 고선량률 선원에 대한 공기커마강도의 품질보증)

  • Kim, Jong-Eon;Yoon, Chun-Sil;Kim, Sung-Hyun
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2007
  • AAPM TG43 report has recommended to measure air kerma strength with the strength of source. Main purpose of this study is to verify the accuracy of air kerma strength provided by manufacturer. Materials for this study were MAX-4001 Electrometer, HDR 1000 Plus of the corporation of standard imaging, and 6 french bronchial Applicator with 1000 mm. we measured ionization current in 10-90 mm range from the bottom of the central axis of chamber. The reference point of calibration displayed by the maximum ionization current in the ionization current curve was measured, and air kerma strength was computed from the maximum ionization current. we acquired 50 mm distance to correspond with the maximum ionization current in the ionization current curve. Its distance has perfectly fitted to the source reference point of calibration certificate of UW-ADCL. Air kerma strength computed value has measured about 0.5% more than calibration value provided by manufacturer. Air kerma strength of calibration certificate provided by manufacturer has acquired reliable results. This study shows that considering the move error of dwell position of source and the dead space length in well-type chamber is a good way to get an accurate result.

  • PDF

Analysis of Accuracy of Apparent Activity According to Calibration Method for High Dose Rate Brachytherapy Source (측정용 전리함에 따른 고 선량율 근접치료용 방사성 선원의 겉보기 활성도의 정확도 비교 분석)

  • Huh, Hyun-Do;Choi, Jin-Ho;Choi, Sang-Hyoun;Kim, Seong-Hoon;Kim, Woo-Chul;Kim, Hun-Jeong;Lee, Re-Na;Kim, Kum-Bae;Hong, Seong-Eon;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.305-312
    • /
    • 2008
  • The aim of this study is to introduce the accuracy of Ir-192 source's apparent activity using the well-type chamber and the Farmer-type ionization chamber in the high dose rate brachytherapy. We measured the apparent activity of Ir-192 that each medical center in the country has and the apparent activity of calibration certificate provided by manufacturer is compared with that by our experimental measurement. The number of sources used for the activity comparison was 5. The accuracy of the measured activity was in the range of -2.8% to -1.0% and -2.1% to 0.2% for the Farmer-type chamber system (Jig) and for the well-type, respectively. The maximum difference was within 1.0% for comparison with two calibration's tool. Our results demonstrate that well-type chamber as wall as Farmer-type chamber is a appropriate system as the routine source calibration procedures in HDR brachytherapy. Whenever a new source is installed to use in clinics, by periods, a source calibration should be carried out.

  • PDF

Study of Radiation dose Evaluation using Monte Carlo Simulation while Treating Extrahepatic Bile Duct Cancer with High Dose Rate Intraluminal Brachytherapy (간외 담도암 고선량률 관내근접방사선치료 시 몬테카를로 시뮬레이션을 통한 주변장기의 선량평가 연구)

  • Park, Ju-Kyeong;Lee, Seung-Hoon;Cha, Seok-Yong;Lee, Sun-Young
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.467-474
    • /
    • 2014
  • The relative dose calculated by MCNPX and the relative dose measured by ionization chamber and solid phantoms evaluated the accuracy comparing with Monte Carlo simulation. In order to apply Monte Carlo simulation the intraluminal brachytherapy of extrahepatic bile duct cancer, 192Ir sealed radioactive source replicate, Bile duct and surrounding organs were made using KMIRD phantom based on a South Korea standard man. To check the absorbed dose of normal organs around bile duct, we set the specific effective energy and initial radioactivity to 1 Ci using MCNPX. Evaluation of the accuracy of the Monte Carlo simulation, the difference of the relative dose is the most 1.96% that satisfy the criteria that is the relative error less than 2% suggested by MCNPX code. In addition, The specific effective energy and absorbed dose of normal organs that were relatively adjacent to bile duct such as right side of kidney, liver, pancreas, transverse colon, spinal cord, stomach and small intestine were relatively high. on the contrary, the organs that were relatively distant to bile duct such as left side of kidney, spleen, ascending colon, descending colon and sigmoid colon were relatively low.

The Study on Design of lead monoxide based radiation detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 산화납 기반 방사선 검출기 설계에 관한 연구)

  • Ahn, Ki-Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.183-188
    • /
    • 2017
  • In recent years, the automatic remote control controller of the gamma ray irradiator malfunctions, and radiation workers are continuously exposed to radiation exposure accidents. In the non-destructive testing field, much time and resources are invested in establishing a radioactive source monitoring system in order to prevent potential incidents of radiation. In this study, the gamma-ray response properties of the lead monoxide-based radiation detector were estimated through monte carlo simulation as a previous study for the development of a radioactive source location monitoring system that can be applied universally to various non-destructive testing equipment. As a result of the study, the optimized thickness of the radiation detector varies according to the gamma-ray energy emitted from the radioactive source, and the optimized thickness gradually increases with increasing energy. In conclusion, the optimized thickness of the lead monoxide-based radiation detector was $200{\mu}m$ for the Ir-192, $150{\mu}m$ for the Se-75 and $300{\mu}m$ for the Co-60. Based on these results, the appropriate thickness of lead monoxide-based radiation detector considering secondary-electron equilibrium was evaluated to be $300{\mu}m$ for general application. These results can be used as a basic data for determining the appropriate thickness required in the radiation detector when developing a radiation source location monitoring system for universal application to various non-destructive testing equipment in the future.

A Study on Quantitative Thickness Evaluation Using Film Density Variation in Film Radiography (Film Radiography에서 농도차를 이용한 정량적 두께 평가에 관한 연구)

  • Lee, Sung-Sik;Lee, Jeong-Ki;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.356-362
    • /
    • 1999
  • Based on the assumption that film density increases exponentially with exposure in the industrial radiographic film. an equation representing the characteristic curves of industrial radiographic films and a new density-thickness relation are suggested. The accuracy and reliability of the suggested relation has been tested using radiographs of a carbon steel step wedge with known thickness variation by polychromatic X-ray and ${\gamma}$-ray ($Ir^{192}$). The experimental results were well agreed to the proposed relation in the range of film densities from 1.0 to 3.5 and it was more accurate than the conventional relation. It is also found that ${\gamma}$-ray is more effective in this purpose than polychromatic X-ray, which results in variation of effective linear absorption coefficient due to beam hardening effect as thickness increases. Therefore using the equation and experimentally determined parameters the quantitative evaluation of thickness variation is possible and it can be used to evaluate the depth of local corrosion of pressure vessels in plants.

  • PDF

The Study on Design of Semiconductor Detector for Checking the Position of a Radioactive Source in an NDT (비파괴검사 분야에서 방사선원의 위치 확인을 위한 반도체 검출기 설계에 관한 연구)

  • Kim, Kyo-Tae;Kim, Joo-Hee;Han, Moo-Jae;Heo, Ye-Ji;Ahn, Ki-Jung;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • In the non-destructive inspection field, we invest a lot of time and resources in developing the radiation source system to ensure the safety of the workers. However, the probability of accidents is still high. In order to prevent potential radiation accidents in advance, it is necessary to directly verify the position of the radiation source, but the research is still insufficient. In this study, we developed a monitoring system that can detect the position of the radiation source in the source guide tube in the gamma-ray irradiator. The characteristics of the radiation detector are estimated by monte carlo simulation. As a result, the radiation detector for Ir-192 gamma-ray energy was analyzed to have secondary electron equilibrium at $150{\mu}m$ regardless of the semiconductor material. Also, it is expected that the gamma ray response characteristic is the best in $HgI_2$. These results are expected to be used as a basis for determining the optimal thickness of the radiation detector located in the detection part of the future monitoring system. In addition, when developing a monitoring system based on this, radiation workers can easily recognize the danger and secure safety, as well as prevent and preemptively respond to potential radiation accidents.

Synthesis and Characterization of UV-curable Aliphatic Epoxy Acrylate (자외선 경화형 지방족 에폭시 아크릴레이트의 합성 및 특성분석)

  • Kim, Young Chul;Lee, Byung-Hoon
    • Journal of Adhesion and Interface
    • /
    • v.10 no.4
    • /
    • pp.191-198
    • /
    • 2009
  • UV-curable aliphatic epoxy acrylates were prepared by the reaction of glycerol diglycidyl ether (GDE) with 2-carboxyethyl acrylate (2-CEA) or 2-hydroxyethyl acrylate (2-HEA). The structures of the epoxy acrylates were characterized by FT-IR, $^1H$-NMR, and $^{13}C$-NMR and the yield was obtained by prep-LC. The UV- and the thermal-curing behaviors of the product were investigated using photo-DSC and DSC, respectively. The reactivity of 2-CEA was higher than 2-HEA and the yield of the product (GEA-C) which was prepared using 2-CEA was about 83%. The maximum UV-curing time ($T_{max}$) of the GEA-C contained non-reactive components and by-product was about 10 seconds. The GEA-C showed low color difference (${\Delta}E^*$), low viscosity, and good thermal stability - its value was 2.51, 192 cps, and $299^{\circ}C$ (at 5% weight loss), respectively. The activation energies ($E_a$) of thermal-curing reaction calculated from Kissinger and Ozawa-Flynn-Wall method were 91~92 kJ/mol.

  • PDF

The Study on Thermal Analysis and Thermodynamic Characteristics of Spinel Compounds(ZnCo2O4, NiCo2O4) (스피넬 구조를 가지는 전이금속화합물(ZnCo2O4, NiCo2O4)의 열적 분석 및 열역학적 특성 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Chul-Hyun;Jang, Won-Cheoul;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.192-197
    • /
    • 2010
  • The spinel compound was obtained by the thermal decomposition of Zn-Co and Zn-Ni gel prepared by sol-gel method using oxalic acid as a chelating agent. The formation of spinel compound has been comfirmed by thermogravimetric analysis (TGA), x-ray powder diffraction (XRD) and infrared spectroscopy (IR). The particle size of 13 nm~16 nm was calculated by Scherrer's equation. The sol-gel method provides a practicable and effective route for the synthesis of the spinel compound at low temperature ($350^{\circ}C$). The kinetic parameters such as activation energy (Ea) and pre-exponential factor (A) for each compound were found by means of the Kissinger method and Arrhenius equation. The decomposition of spinel compound has an activation energy about 155 kJ/mol. Finally, the thermodynamic parameters (${\Delta}G^{\varphi}$, ${\Delta}H^{\varphi}$, ${\Delta}S^{\varphi}$) for decomposition of spinel compound was determined.

The Study on Applicability of Semi-conductive Compound for Radioactive Source Tracing Dosimeter in NDT Field (비파괴 검사 분야의 방사성 동위원소 위치추적을 위한 반도체 화합물의 적용 가능성 연구)

  • Shin, Yohan;Han, Moojae;Jung, Jaehoon;Kim, Kyotae;Heo, Yeji;Lee, Deukhee;Cho, Heunglae;Park, Sungkwang
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2019
  • Radiation safety management is being considered very important since radioactive isotopes such as Co-60 and Ir-192 are widely used in fields such as non-destructive test(NDT). In this study, the applicability of Mercury(II) Iodide($HgI_2$) source for tracing system was evaluated. To make sure the unit cell sensor's reliability, we evaluated the electrical properties of the sensor made with $HgI_2$, and then position dependence of the sensor was analyzed and compared with the dose distribution from the planning system. As a result of the evaluation, high reliability of the sensor was shown through the linearity of R-sq > 0.990 and reproducibility of CV < 0.015. In the position dependence evaluation, the maximum value was measured at the isocenter of the sensor and gradually decreased according to the distance. However, the dose distribution data from the planning system was turned out that has difference with that of the sensor up to 30%. This seems to come from the difference between single-point measuring based planning system and area measuring based sensor.

Investigation of the Internal Structure and Gold-thin Layer of the Gilt-bronze Seated Avalokitesvara Bodhisattva at Anseong Cheonryong Temple through the Non-destructive Analysis (비파괴 분석법을 통한 안성 청룡사 금동관음보살좌상 내부구조 및 금박층 조사)

  • Choi, Jung Eun;Choi, Hak
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.670-678
    • /
    • 2021
  • Anseong Cheonryongsa, a temple located in Anseong Seoun Mountain, is a part of the second Jogye Order of Korean Buddhism, under the Yongju Temple, and enshrines a gilt-bronze seated Avalokitesvara Bodhisattva. In this study, X-ray fluorescence (XRF) analysis revealed that this statue is composed of Cu-27.2 wt%, Sn-12.6 wt% and Pb-48 wt%. A gamma (γ) ray (Ir-192) image confirmed damage on the backside of the statue, which was later repaired with wood. The XRF analysis and visual observation determined the boundary between the metal and wood in the statue. In addition, results of standard X-ray peak intensity of gold foil and correlation with thickness helped to derive an equation for calculating the thickness of the Avalokitesvara Bodhisattva's gold foil. It was determined that the gilded chest (21 ㎛) and face (20.7 ㎛) of the statue were the thickest sections, the wooden substratum (11.9 ㎛) was the next-most thick, and the bronze (7.4 ㎛) was the thinnest layer.