• Title/Summary/Keyword: Ionizing Radiation

Search Result 490, Processing Time 0.027 seconds

Synergistic Effects of Ionizing Radiation and Mercury Chloride on Cell Viability in Fish Hepatoma Cells (이온화 방사선 및 염화수은 처리에 따른 어류 간암세포의 생존능 평가)

  • Han, Min;Hyun, Kyung-Man;Nili, Mohammad;Hwang, In-Young;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.140-145
    • /
    • 2009
  • All organisms are being exposed to harmful factors present in the environmental. The combined action of various factors is a distinguishing feature of modern life. An interaction between two chemicals is considered as synergistic when the effect produced is greater than the sum of the two single responses. The biological effects due to the combined action of ionizing radiation with the other factor are hard to estimate and predict in advance. In the current study, we investigated the synergistic effects between ionizing and $HgCl_2$ using fish hepatoma cells (PLHC-1 cells). The results showed a dramatic decrease of cell viability after simultaneous treatment of PLHC-1 cells with ionizing radiation and $HgCl_2$. Neiither of the two had any cytotoxic effect when treated alone. The cytotoxicity of ionizing radiation was enhanced in the presence of $HgCl_2$. The synergistic effects were observed after exposure of the PLHC-1 cells to ionizing radiation combined with $HgCl_2$. The synergistic interaction was due to an increase of irreversibly damaged cells after the combined exposure. Analysis of the extent of synergistic interaction enables to make quantitative estimation of irreversibly damaged cells after the combined exposure. The present study suggests that PLHC-1 cells can serve as rapid screening tools for detecting the toxicity of harmful factors.

A Proposal on Evaluation Method of Neutron Absorption Performance to Substitute Conventional Neutron Attenuation Test

  • Kim, Jae Hyun;Kim, Song Hyun;Shin, Chang Ho;Choe, Jung Hun;Cho, In-Hak;Park, Hwan Seo;Park, Hyun Seo;Kim, Jung Ho;Kim, Yoon Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.4
    • /
    • pp.384-388
    • /
    • 2016
  • Background: For a verification of newly-developed neutron absorbers, one of guidelines on the qualification and acceptance of neutron absorbers is the neutron attenuation test. However, this approach can cause a problem for the qualifications that it cannot distinguish how the neutron attenuates from materials. Materials and Methods: In this study, an estimation method of neutron absorption performances for materials is proposed to detect both direct penetration and back-scattering neutrons. For the verification of the proposed method, MCNP simulations with the experimental system designed in this study were pursued using the polyethylene, iron, normal glass and the vitrified form. Results and Discussion: The results show that it can easily test neutron absorption ability using single absorber model. Also, from simulation results of single absorber and double absorbers model, it is verified that the proposed method can evaluate not only the direct thermal neutrons passing through materials, but also the scattered neutrons reflected to the materials. Therefore, the neutron absorption performances can be accurately estimated using the proposed method comparing with the conventional neutron attenuation test. Conclusion: It is expected that the proposed method can contribute to increase the reliability of the performance of neutron absorbers.

The Effect of Ionizing Radiation on the Ultrastructural Changes and Mechanism on the Cytoplasmic Organelles (전리방사선이 세포질 소기관의 미세구조변화와 기전에 미치는 영향)

  • Lee, Moo Seok;Lee, Jong Kyu;Nam, Ji Ho;Ha, Tae Yeong;Lim, Yeong Hyeon;Kil, Sang Hyeong
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.708-725
    • /
    • 2017
  • Ionizing radiation is enough energy to interact with matter to remove orbital electrons, neutrons, and protons in the atom. Ionizing radiation like this leads to oxidizing metabolism that alter molecular structure through direct and indirect interactions of radiation with the deoxyribonucleic acid in the nucleus and cytoplasmic organelles or via products of cytoplasm radiolysis. These ionization can result in tissue damage and disruption of cellular function at the molecular level. Consequently, ionizing radiation-induced modifications of ion channels and transporters have been reported. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Also, Reactive oxygen species formed on the effect of ionizing radiation can get across into neighboring cells through the cell junctions that are responsible for intercellular chemical communication, and may there bring about changes characteristic to radiation damage. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. This paper briefly reviewed reports on ionization radiation effects on cellular level that support the concept of radiation biology. A better understanding of the biological effects of ionizing radiation will lead to better use of and better protection from radiation.

The effect of ionizing radiation on robotic trajectory movement and electronic components

  • Sofia Coloma;Paul Espinosa Peralta;Violeta Redondo;Alejandro Morono;Rafael Vila;Manuel Ferre
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4191-4203
    • /
    • 2023
  • Robotics applications are greatly needed in hazardous locations, e.g., fusion and fission reactors, where robots must perform delicate and complex tasks under ionizing radiation conditions. The drawback is that some robotic parts, such as active electronics, are susceptible to radiation. It can lead to unexpected failures and early termination of the robotic operation. This paper analyses the ionizing radiation effect from 0.09 to 1.5 Gy/s in robotic components (microcontrollers, servo motors and temperature sensors). The first experiment compares the performance of various microcontroller types and their actuators and sensors, where different mitigation strategies are applied, such as using Radiation-Hardened (Rad-Hard) microcontrollers or shielding. The second and third experiments analyze the performance of a 3-Degrees of Freedom (DoF) robotic arm, evaluating its components' responses and trajectory. This study enhances our understanding and expands our knowledge regarding radiation's impact on robotic arms and components, which is useful for defining the best strategies for extending the robots' operational lifespan, especially when performing maintenance or inspection tasks in radiation environments.

Physiological Characterization of Mono-Cotyledonous Model Plant by Ionizing Irradiation (단자엽 모델 식물의 이온화 에너지원에 따른 생리 활성)

  • Song, Mira;Kim, Sun-Hee;Jang, Duk-Soo;Kang, Si-Yong;Kim, Jin-Baek;Kim, Sang Hoon;Ha, Bo-Keun;Park, Yong Dae;Kim, Dong Sub
    • Journal of Radiation Industry
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The present study has been performed to compare the physiological analysis of monocot model plant (rice) in response to ionizing irradiations (cosmic-ray, gamma-ray, and Ion beam). Ionizing radiations were implanted into monocot model plant (rice) seed. After irradiation, the seeds were planted in the plastic pots for a growth period of one month. Thereafter, the morphological and physiological characteristics including malondealdehyde (MDA) and chlorophyll content, activities of antioxidant enzymes in irradiation samples were investigated. We are confirmed that the activity level of MDA and chlorophyll content were not changed by ionizing irradiation samples. However, the free radical contents were increased in all irradiated plants. And the activities of SOD, POD, and APX were significantly increased by irradiation compared with non-irradiation plant.

The protective effects of trace elements against side effects induced by ionizing radiation

  • Hosseinimehr, Seyed Jalal
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.66-74
    • /
    • 2015
  • Trace elements play crucial role in the maintenance of genome stability in the cells. Many endogenous defense enzymes are containing trace elements such as superoxide dismutase and metalloproteins. These enzymes are contributing in the detoxification of reactive oxidative species (ROS) induced by ionizing radiation in the cells. Zinc, copper, manganese, and selenium are main trace elements that have protective roles against radiation-induced DNA damages. Trace elements in the free salt forms have protective effect against cell toxicity induced by oxidative stress, metal-complex are more active in the attenuation of ROS particularly through superoxide dismutase mimetic activity. Manganese-complexes in protection of normal cell against radiation without any protective effect on cancer cells are more interesting compounds in this topic. The aim of this paper to review the role of trace elements in protection cells against genotoxicity and side effects induced by ionizing radiation.

Potential applications of radioprotective phytochemicals from marine algae

  • Oh, Jae-Young;Fernando, I.P. Shanura;Jeon, You-Jin
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.403-414
    • /
    • 2016
  • The use of ionizing radiation and radioactive elements is becoming increasingly popular with the rapid developments in nuclear technology, radiotherapy, and radio diagnostic methods. However, ionizing radiation can directly or indirectly cause life-threatening complications such as cancer, radiation burns, and impaired immunity. Environmental contamination with radioactive elements and the depletion of ozone layer also contribute to the increased levels of radiation exposure. Radioprotective natural products have particularly received attention for their potential usefulness in counteracting radiation-induced damage because of their reduced toxicity compared with most drugs currently in use. Moreover, radioprotective substances are used as ingredients in cosmetic formulations in order to provide protection against ultraviolet radiation. Over the past few decades, the exploration of marine algae has revealed the presence of radioprotective phytochemicals, such as phlorotannins, polysaccharides, carotenoids and other compounds. With their promising radioprotective effects, marine algae could be a future source for discovering potential radioprotective substances for development as useful in therapeutics.

Differential Expressions of Apoptosis-related Genes in Lung Cancer Cell Lines Determine the Responsiveness to Ionizing Radiation

  • Lee, Su-Yeon;Choi, Moon-Kyung;Lim, Jung-Min;Wu, Hong-Gyun;Kim, Ju-Han;Park, Woong-Yang
    • Genomics & Informatics
    • /
    • v.6 no.1
    • /
    • pp.36-43
    • /
    • 2008
  • Radiotherapy would be the choice of treatment for human cancers, because of high cost-effectiveness. However, a certain population of patients shows a resistance to radiotherapy and recurrence. In an effort to increase the efficacy of radiotherapy, many efforts were driven to find the genes causing the unresponsiveness to ionizing radiation. In this paper, we compared the gene expression profiles of two lung cancer cell lines, H460 and H1299, which showed differential responses to ionizing radiations. Each cell were irradiated at 2 Gy, and harvested after 0, 2, 4, 8, 12 and 24 hours to examine the expressions. Two-way ANOVA analysis on time-series experiments of two cells could select 2863 genes differentially expressed upon ionizing radiation among 32,321 genes in microarray (p<0.05). We classified these genes into 21 clusters by SOM clustering according to the interaction between cell types and time. Two SOM clusters were enriched with apoptosis-related genes in pathway analysis. One cluster contained higher levels of phosphatidyl inositol 3-phosphate kinase (PI3K) subunits in H1299, radio-resistant cells than H460, radiosensitive cells. TRAIL receptors were expressed in H460 cells while the decoy receptor for TRAIL was expressed in H1299 cells. From these results, we could characterize the differential responsiveness to ionizing radiation according to their differential expressions of apoptosis-related genes, which might be the candidates to increase the power of radiotherapy.

Exposure Assessment and Management of Ionizing Radiation (전리방사선 노출과 관리)

  • Chung, Eun-Kyo;Kim, Kab-Bae;Song, Se-Wook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • Objectives: To investigate safety and health management, conditions in factories or facilities handling radiation-generating devices and radioactive isotopes were reviewed in terms of regulations of radiation safety control in Korea. Radiation exposure levels generated at those facilities were directly measured and evaluated for establishing an effective safety and health management plan. Methods: Government organizations with laws and systems of radiation safety and health were investigated and compared. There are three laws governing radiation-related employment such as occupational safety and health acts, nuclear safety acts, and medical service acts. We inspected 12 workplaces as research objects:four workplaces that manufacture and assemble semiconductor devices, three non-destructive inspection workplaces that perform inspections on radiation penetration, and five workplaces in textile and tire manufacturing. Monitoring of radiation exposure was performed through two methods. Spatial and surface monitoring using real-time radiation instruments was performed on each site handling radiation generating devices and radioactive isotopes in order to identify radiation leakage. Results: According to the occupational safety and health act, there is no legal obligation to measure ionizing radiation and set dose limits. This can cause confusion in the application of the laws, because the scopes and contents are different from each other. Surface dose rates in radiation generating devices such as implanters, thickness gages and accelerators, which were registered according to nuclear safety acts, using surveymeters, and seven of 36 facilities(19.4%) exceeded the international standards for surface radiation dose of $10{\mu}Sv/hr$. Conclusions: The results showed that occupational health and safety acts require a separate provision for measuring and assessing the radiation exposure of workers performing radiation work. Like noise, ionizing radiation will also periodically be controlled by including it in the object factors of work-environment measurement.

Cholesteric Liquid Crystals as Multi-Purpose Sensor Materials

  • Lisetski, L.N.
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.27-30
    • /
    • 2005
  • New possibilities are discussed for cholesteric liquid crystals (CLC) as sensor materials for detection of ionizing radiation, biologically active UV radiation, and the presence of hazardous vapors in atmosphere. A distinguishing property of CLC-based detectors is their 'bioequivalence', i.e., mechanisms of their response to external factors essentially imitate the corresponding mechanisms of biological tissues. Such detectors can ensure sufficiently high sensitivity to make feasible their use as alarm indicators or in biophysical studies. Specific examples ate given of sensor compositions and their response characteristics.