• Title/Summary/Keyword: Ionizing

Search Result 587, Processing Time 0.024 seconds

Influence of Mercury on the Repair of Ionizing Radiation-induced DNA Damage in Coelomocytes of Eisenia fetida (이온화 방사선에 의해 손상된 Eisenia fetida 체강세포의 DNA 수복에 수은이 미치는 영향)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.236-240
    • /
    • 2011
  • Mercury known as quicksilver, is the most common cause of heavy metal toxicity. Toxicity caused by excessive mercury exposure is now being recognized as a widespread environmental problem and is continuing to attract a great deal of public concerns. The mercury genotoxicity could be its effect on DNA repair mechanisms, which constitute the defense system designated to protect genome integrity. The objective of this study is to confirm that mercuric chloride inhibits the repair of gamma ray-induced DNA damage. The earthworm of Eisenia fetida was chosen for this study because it is an internationally accepted model species for toxicity testing with a cosmopolitan distribution. Experiments were done to identify the levels of DNA damage and the repair kinetics in the coelomocytes of E. fetida irradiated with 20 Gy gamma rays alone or with gamma rays after 40 mg $kg^{-1}$ $HgCl_2$ treatment by means of the single cell gel electrophoresis assay. The Olive tail moments were measured during 0~96 hours after irradiation. The repair time in the animals treated with the combination of $HgCl_2$ and ionizing radiation was nearly five times longer than that in the animals treated with ionizing radiation alone. Also, E. fetida exposed to mercury showed a statistically lower repair efficiency of gamma ray-induced DNA damage. The results suggest that the mercury could even have deleterious effects on the DNA repair system. Influence of mercury on the DNA repair mechanisms has been confirmed by this study.

The Evaluation of Non-Ionizing Radiation (Near-Infrared Radiation) based Medical Imaging Application : Diabetes Foot (비전리 방사선 (근적외선) 기반 의료영상 활용 가능성 평가: 당뇨발)

  • Jung, Young-Jin;Shin, Cheol-Won;Ahn, Sung-Min;Hong, Jun-Yong;Ahn, Yun-Jin;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.399-406
    • /
    • 2016
  • Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of NIR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science.

Evaluation of DNA Damage by Mercury Chloride (II) and Ionizing Radiation in HeLa Cells (이온화 방사선 및 염화수은(II)에 의한 자궁경부암 세포의 DNA 손상 평가)

  • Woo Hyun-Jung;Kim Ji-Hyang;Antonina Cebulska-Wasilewska;Kim Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.1 s.61
    • /
    • pp.46-52
    • /
    • 2006
  • The mercury is among the most highly bioconcentrated toxic trace metals. Many national and international agencies and organisations have targeted mercury for the possible emission control. The mercury toxicity depends on its chemical form, among which alkylmercury compounds are the most toxic. A human cervix uterus cancer cell line HeLa cells was employed to investigate the effect of the toxic heavy metal mercury (Hg) and ionizing radiation. In the in vitro comet assays for the genotoxicity in the HeLa cells, the group of Hg treatment after irradiation showed higher DNA breakage than the other groups. The tail extent moment and olive tail moment of the control group were $4.88{\pm}1.00\;and\;3.50{\pm}0.52$ while the values of the only Hg treatment group were $26.90{\pm}2.67\;and\;13.16{\pm}1.82$, respectively. The tail extent moment and olive tail moment of the only 0.001, 0.005, 0.01 Hg group were $12.24{\pm}1.82,\;8.20{\pm}2.15,\;20.30{\pm}1.30,\;12.26{\pm}0.52,\;40.65{\pm}2.94\;and \;20.38{\pm}1.49$, respectively. In the case of Hg treatment after irradiation, the tail extent moment and olive tail moment of the 0.001, 0.005, 0.01 Hg group were $56.50{\pm}3.93,\;32.69{\pm}2.48,\;62.03{\pm}5.14,\;31.56{\pm}1.97,\;72.73{\pm}3.70\;and \;39.44{\pm}3.23$, respectively. The results showed that Hg induced DNA single-strand breaks or alkali labile sites as assessed by the Comet assay. It is in good agreement with the reported results. The mercury inhibits the repair of DNA. The bacterial formamidopyrimidine-DNA glycosylase (Epg protein) recognizes and removes some oxidative DNA base modifications. Enzyme inactivation by Hg (II) may therefore be due either to interactions with rysteine residues outside the metal binding domain or to very high-affinity binding of Hg (II) which readily removes Zn (II) from the zinc finger.

Basic Fibroblast Growth Factor(bFGF) Inhibits Radiation-induced Apoptosis on Human Umbilical Vein Endothelial Cells(HUVECs) (18) 방사선에 의한 제대 혈관내피세포의 apoptosis와 Basic Fibroblast Growth Factor의 억제 효과)

  • Lee Song Jae;Chang Jae Chul
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.25 no.1
    • /
    • pp.317-323
    • /
    • 1999
  • The response of endothelial cells to ionizing radiation is thought to be an important factor in the overall response of normal tissue. It has been reported that basic fibroblast growth factor (bFGF), a potent mitogen for endothelial cells, protects endoth

  • PDF

Radiation-induced Tumorigenesis

  • Kim, In-Gyu;Lee, Yun-Sil
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.144-148
    • /
    • 2003
  • During the past 2 decades, radiation tumorigenesis researchers have focused on cellular and molecular mechanisms. We reviewed some of these research fields, since they may specifically relate to the induction of cancer by ionizing radiation. First, radiation-mediated mutation was discussed. Then the initiating event in radiation carcinogenesis, as well as other genetic events that may by involved, is discussed in terms of the possible role of the activation of genes and the loss of cell-cycle checkpoints.

Pediatric Neuro-MRI : Techniques and Methods

  • 윤혜경
    • Proceedings of the KSMRM Conference
    • /
    • 1999.04a
    • /
    • pp.81-86
    • /
    • 1999
  • MR은 높은 조직 대조도와 축상, 시상 및 관상면 등의 multiplanar capability의 커다란 장점을 갖고 있어 뇌 신경계질환 진단에 필수적이며, 특히 ionizing radiation이 아니고 요오드계 IV 조영제를 사용하지 않는다는 점이 CT에 비해 더욱 유리하다. 소아에서의 뇌신경계 질환은 선천성 기형이나 대사성 질환이 많은 등 성인과는 다른 질환분포를 보인다. 따라서 성인에서와 같은 protocol을 그대로 적용하였을 때 좋은 질의 영상을 얻기 힘든 경우가 있으며, 연령 또는 질환에 따라 촬영기법도 다양하게 하여야 하므로 routine protocol을 정하지 않고 매 환아 마다 적절한 기법을 선택하고 있다. 또한 움직임을 억제하기 위하여 진정 (sedation)이 필요한 예가 대부분이며 적절한 잠재우기는 좋은 질의 영상을 얻기 위해 필수적이므로 이에 대한 지식을 필요로 한다.

  • PDF