• Title/Summary/Keyword: Ionized gas

Search Result 155, Processing Time 0.019 seconds

MISCLASSIFIED TYPE 1 AGNS IN THE LOCAL UNIVERSE

  • Woo, Jong-Hak;Kim, Ji-Gang;Park, Daeseong;Bae, Hyun-Jin;Kim, Jae-Hyuk;Lee, Seung-Eon;Kim, Sang Chul;Kwon, Hong-Jin
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.167-178
    • /
    • 2014
  • We search for misclassified type 1 AGNs among type 2 AGNs identified with emission line flux ratios, and investigate the properties of the sample. Using 4 113 local type 2 AGNs at 0.02 < z < 0.05 selected from Sloan Digital Sky Survey Data Release 7, we detected a broad component of the $H{\alpha}$ line with a Full-Width at Half-Maximum (FWHM) ranging from 1 700 to $19090km\;s^{-1}$ for 142 objects, based on the spectral decomposition and visual inspection. The fraction of the misclassified type 1 AGNs among type 2 AGN sample is ~3.5%, implying that a large number of missing type 1 AGN population may exist. The misclassified type 1 AGNs have relatively low luminosity with a mean broad $H{\alpha}$ luminosity, log $L_{H\alpha}=40.50{\pm}0.35\;erg\;s^{-1}$, while black hole mass of the sample is comparable to that of the local black hole population, with a mean black hole mass, log $M_{BH}=6.94{\pm}0.51\;M_{\odot}$. The mean Eddington ratio of the sample is log $L_{bol}/L_{Edd}=-2.00{\pm}0.40$, indicating that black hole activity is relatively weak, hence, AGN continuum is too weak to change the host galaxy color. We find that the O III lines show significant velocity offsets, presumably due to outflows in the narrow-line region, while the velocity offset of the narrow component of the $H{\alpha}$ line is not prominent, consistent with the ionized gas kinematics of general type 1 AGN population.

Effects of DBD-bio-plasma on the HSP70 of Fibroblasts: A New Approach on Change of Molecular Level by Heat Shock in the Cell (Fibroblasts 세포주의 HSP70에 대한 DBD-bio-plasma의 effects: Cell에서 Heat Shock에 의한 Molecular Level 변화로의 새로운 접근법)

  • Kim, Kyoung-Yeon;Yi, Junyeong;Nam, Min-Kyung;Choi, Eun Ha;Rhim, Hyangshuk
    • KSBB Journal
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • Plasma is an ionized gas mixture, consisting of neutral particles, positive ions, negative electrons, electronically excited atoms and molecules, radicals, UV photons, and various reactive species. Also, plasma has unique physical properties distinct from gases, liquids, and solids. Until now, non-thermal plasmas have been widely utilized in bio-medical applications (called bio-plasma) and have been developed for the plasma-related devices that are used in the medical field. Although numerous bio-plasma studies have been performed in biomedicine, there is no confirmation of the nonthermal effect induced by bio-plasma. Standardization of the biological application of plasma has not been evaluated at the molecular level in living cells. In this context, we investigated the biological effect of bio-plasma on living cells. Hence, we treated the fibroblasts with Dielectric Bauvier Discharge bio-plasma (DBD), and assessed the characteristic change at the molecular level, one of the typical cellular responses. Heat shock protein 70 (HSP70) regulates its own protein level in response to stimuli. HSP70 responds to heat shock by increasing its own expression at the molecular level in cells. Hence, we confirmed the level of HSP70 after treatment of mouse embryonic fibroblasts (MEFs) with DBD. Interestingly, DBD-plasma induced cell death, but there was no difference in the level of HSP70, which is induced by heat shock stimuli, in DBD-treated MEFs. Our data provide the basic information on the interaction between MEFs and DBD, and can help to design a molecular approach in this field.

Evaluation of the Potential of Nitrogen Plasma to Cosmetics (질소 플라즈마의 화장품 가능성 평가)

  • Lee, So Min;Jung, So Young;Brito, Sofia;Heo, Hyojin;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Lee, Mi-Gi;Bin, Bum-Ho;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • Plasma refers to an ionized gas that is often referred to as "the fourth phase of matter", following solid, liquid, and gas. Plasma has traditionally been utilized for industrial applications such as welding and neon signs, but its promise in biomedical fields such as cancer treatment and dermatology has lately been recognized. Indeed, due to its beneficial effects in promoting collagen production, improving skin tone, and eliminating harmful bacteria in the skin, plasma treatment constitutes an important target for dermatological research. In this study, a plasma device for cosmetic manufacturing based on nitrogen, the main component of the atmosphere, was designed and assembled. Moreover, nitric oxide (NO) was selected since is easier to follow and evaluate than other nitrogen plasma active species, and its contents were measured to perform a quantitative and qualitative evaluation of plasma. First, an injection method, using different proximities labeled "sinking" and "non sinking" treatments, was performed to test the most efficient plasma treatment method. As a result, it was observed that the formulation obtained by a non sinking treatment was more effective. Furthermore, toner and ampoule were selected as cosmetics formulations, and the characteristics of the formulation and changes in the injected plasma state were observed. In both formulations, the successful injection of NO plasma was 2 times higher in toner formulation than ampoule formulation, and it gradually decreased with time, having dissipated after a week. It was confirmed that the nitrogen plasma used did not affect the stability of the toner and ampoule formulations at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃ and 50 ℃) conditions. The results of this study demonstrate the potential of plasma cosmetics and highlight the importance of securing the stability of the injected plasma.

Study of Trans Fatty Acids and Saturated Fatty Acids in Child-favored Foods (어린이 기호식품 중 트랜스지방 및 포화지방 실태조사)

  • Yoon, Tae-Hyung;Lee, Sung-Min;Shin, Hee-Jun;Lee, Soo-Yeon;Hong, Jin;No, Ki-Mi;Park, Kyoung-Sik;Leem, Dong-Gil;Lee, Kwang-Ho;Jeong, Ja-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1562-1568
    • /
    • 2011
  • We studied the amounts of trans fatty acids and saturated fatty acids in child-favored foods. Confectioneries, breads, donuts and hamburgers were included in this study. The total fatty acid content and the amount of each type of fatty acid were determined by gas chromatography with a flame-ionized detector. Confectioneries were shown to have the highest content of crude fat. The mean content was 24.2${\pm}$6.9 (range: 4.6~41.1) g/100 g food. The mean content of crude fat in donuts, bread and hamburgers was 23.9${\pm}$5.8 (range: 14.1~39.5) g/100 g food, 15.7${\pm}$7.9 (range: 1.4~30.0) g/100 g food, and 9.5${\pm}$3.4 (range: 4.5~18.5) g/100 g food, respectively. Bread had the most trans fatty acids at 1.3 g/100 g food. This result inferred that manufacturers have tried to reduce the trans fat content. The mean content of saturated fatty acids in confectioneries, donuts, bread, and hamburgers was 11.6${\pm}$4.8 (range: 2.0~22.7) g/100 g food, 11.2${\pm}$4.0 (range: 4.8~23.2) g/100 g food, 6.9${\pm}$4.1 (range: 0.6~15.4) g/100 g food, 3.0${\pm}$1.0 (range: 1.0~5.8) g/100 g food, respectively. This content depended on crude fat. The composition of fatty acids varied according to the oil and fat used in the manufacturing process of each food, and the natural content. Foods that were fried in vegetable oil tended to be especially low in saturated fat.

THE LUMINOSITY-LINEWIDTH RELATION AS A PROBE OF THE EVOLUTION OF FIELD GALAXIES

  • GUHATHAKURTA PURAGRA;ING KRISTINE;RIX HANS-WALTER;COLLESS MATTHEW;WILLIAMS TED
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.63-64
    • /
    • 1996
  • The nature of distant faint blue field galaxies remains a mystery, despite the fact that much attention has been devoted to this subject in the last decade. Galaxy counts, particularly those in the optical and near ultraviolet bandpasses, have been demonstrated to be well in excess of those expected in the 'no-evolution' scenario. This has usually been taken to imply that galaxies were brighter in the past, presumably due to a higher rate of star formation. More recently, redshift surveys of galaxies as faint as B$\~$24 have shown that the mean redshift of faint blue galaxies is lower than that predicted by standard evolutionary models (de-signed to fit the galaxy counts). The galaxy number count data and redshift data suggest that evolutionary effects are most prominent at the faint end of the galaxy luminosity function. While these data constrain the form of evolution of the overall luminosity function, they do not constrain evolution in individual galaxies. We are carrying out a series of observations as part of a long-term program aimed at a better understanding of the nature and amount of luminosity evolution in individual galaxies. Our study uses the luminosity-linewidth relation (Tully-Fisher relation) for disk galaxies as a tool to study luminosity evolution. Several studies of a related nature are being carried out by other groups. A specific experiment to test a 'no-evolution' hypothesis is presented here. We have used the AUTOFIB multifibre spectro-graph on the 4-metre Anglo-Australian Telescope (AAT) and the Rutgers Fabry-Perot imager on the Cerro Tolalo lnteramerican Observatory (CTIO) 4-metre tele-scope to measure the internal kinematics of a representative sample of faint blue field galaxies in the red-shift range z = 0.15-0.4. The emission line profiles of [OII] and [OIII] in a typical sample galaxy are significantly broader than the instrumental resolution (100-120 km $s^{-l}$), and it is possible to make a reliable de-termination of the linewidth. Detailed and realistic simulations based on the properties of nearby, low-luminosity spirals are used to convert the measured linewidth into an estimate of the characteristic rotation speed, making statistical corrections for the effects of inclination, non-uniform distribution of ionized gas, rotation curve shape, finite fibre aperture, etc.. The (corrected) mean characteristic rotation speed for our distant galaxy sample is compared to the mean rotation speed of local galaxies of comparable blue luminosity and colour. The typical galaxy in our distant sample has a B-band luminosity of about 0.25 L$\ast$ and a colour that corresponds to the Sb-Sd/Im range of Hub-ble types. Details of the AUTOFIB fibre spectroscopic study are described by Rix et al. (1996). Follow-up deep near infrared imaging with the 10-metre Keck tele-scope+ NIRC combination and high angular resolution imaging with the Hubble Space Telescope's WFPC2 are being used to determine the structural and orientation parameters of galaxies on an individual basis. This information is being combined with the spatially resolved CTIO Fabry-Perot data to study the internal kinematics of distant galaxies (Ing et al. 1996). The two main questions addressed by these (preliminary studies) are: 1. Do galaxies of a given luminosity and colour have the same characteristic rotation speed in the distant and local Universe? The distant galaxies in our AUTOFIB sample have a mean characteristic rotation speed of $\~$70 km $s^{-l}$ after correction for measurement bias (Fig. 1); this is inconsistent with the characteristic rotation speed of local galaxies of comparable photometric proper-ties (105 km $s^{-l}$) at the > $99\%$ significance level (Fig. 2). A straightforward explanation for this discrepancy is that faint blue galaxies were about 1-1.5 mag brighter (in the B band) at z $\~$ 0.25 than their present-day counterparts. 2. What is the nature of the internal kinematics of faint field galaxies? The linewidths of these faint galaxies appear to be dominated by the global disk rotation. The larger galaxies in our sample are about 2"-.5" in diameter so one can get direct insight into the nature of their internal velocity field from the $\~$ I" seeing CTIO Fabry-Perot data. A montage of Fabry-Perot data is shown in Fig. 3. The linewidths are too large (by. $5\sigma$) to be caused by turbulence in giant HII regions.

  • PDF