• Title/Summary/Keyword: Ionized gas

Search Result 155, Processing Time 0.023 seconds

Evaluation of Airborne Volatile Organic Compounds Concentrations During Nail Art Practicing for College Students (대학 네일아트 실습 중 발생하는 휘발성 유기화합물의 공기 중 농도 평가)

  • Park, Yunkyung;Choi, Inja;Choi, Hyeyoung;Ahn, Jaekyoung;Choi, Sangjun;Kim, Sujin;Kim, Hyunseo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.452-463
    • /
    • 2019
  • Objectives: The purpose of this study is to evaluate airborne concentrations of volatile organic compounds(VOCs) during nail art practice by college students. Methods: Personal samples for students were measured using passive samplers(OVM 3500) during three kinds of practice, including polish nail, gel nail and acrylic French sculpture at two universities located in Gyeongsangbuk-do Province. We also monitored area concentrations using active samplers and real-time total VOC monitors(ppbRAE 3000). All samples were analyzed with a gas chromatography flame ionized detector. Statistical analysis for monitored data were conducted using a web-based Bayesian toolkit, EXPOSTATS(www.expostats.ca). Results: Twenty-four personal samples and ten area samples were collected and five chemicals(acetone, butyl acetate, ethyl acetate, ethyl methacrylate(EMA) and methyl methacrylate(MMA)) were detected. Acetone was detected in all personal samples and ranged from 2.58 ppm to 50.3 ppm. EMA was detected in all personal and area samples with a maximum concentration of 9.78 ppm during acrylic French sculpture. Personal exposure levels to acetone, butyl acetate and mixtures were significantly higher with high occupant density (p<0.05). Geometric mean (GM) concentrations of 3.61 ppm for EMA personal samples were significantly higher than that of area samples, 1.5 ppm (p<0.05). Since there was no local ventilation, total VOC concentration continued to increase as the practice progressed. Conclusions: In order to minimize VOCs exposure for trainees, it is necessary to introduce a local ventilation system and maintain adequate occupant density.

Alignment and lattice quality of hexagonal rings of hexagonal BN films synthesized by ion beam assisted deposition (이온빔보조증착법으로 합성한 hexagonal BN막의 hexagonal ring의 배열과 결정성)

  • 박영준;한준희;이정용;백영준
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 1999
  • We have studied the alignment and the lattice quality of hexagonal rings of h-BN films synthesized by ion beam assisted deposition (IBAD) method. Boron was e-beam evaporated at 1.5 $\AA$/sec and nitrogen gas was ionized using end-hall type ion gun at 60, 80, and 100 eV, respectively. Substrate was either not heated or heated at 200, 400, 500, and $800^{\circ}C$, respectively. As nitrogen ion energy increases, c-axes of hexagonal rings tend to align parallel to the substrate, which is explained by larger compressive stress at higher ion energies. Alignment of c-axis increases with temperature and shows maximum around $400^{\circ}C$. The lattice quality of hexagonal rings improves with temperature. Such behaviors can be understood from two counter trends of increasing the atomic mobility and decreasing compressive stress with temperature. Hardness of h-BN films shows the same trend with the alignment of c-axis. Ion beam assisted deposition method seems to be effective for aligning hexagonal rings and optimizing h-BN properties.

  • PDF

Development Status of the DOTIFS: a new multi-IFU optical spectrograph for the 3.6m Devasthal Optical Telescope

  • Chung, Haeun;Ramaprakash, A.N.;Omar, Amitesh;Ravindranath, Swara;Chattopadhyay, Sabyasachi;Rajarshi, Chaitanya V.;Khodade, Pravin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2014
  • DOTIFS is a new multi-object Integral Field Spectrograph (IFS) being designed and fabricated by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for the Cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT). The telescope is constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital (ARIES). Its main scientific objectives are the physics and kinematics of the ionized gas, star formation and H II regions in nearby galaxies. It is a novel instrument in terms of multi-IFU, built in deployment system, and high throughput. It consists of one magnifier, 16 integral field units (IFUs), and 8 spectrographs. Each IFU is comprised of a microlens array and 144 optical fibers, and has $7.4^{\prime\prime}{\times}8.7^{\prime\prime}$ field of view with 144 spaxel elements with a sampling of 0.8" hexagonal aperture. The IFUs can be deployed on the telescope side port over an 8' diameter focal plane by x-y actuators. 8 Identical, all refractive, dedicated fiber spectrographs will produce 2,304 R~1800 spectra over 370-740nm wavelength range with single exposure. Currently, conceptual and baseline design review had been done, and is in the critical design phase with a review planned for later this year. Some of the components have already arrived. The instrument will see its first light in 2015.

  • PDF

FUV spectral images of the Orion-Eridanus Superbubble region

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il;Edelstein, Jerry;Han, Won-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • The far-ultraviolet (FUV) continuum and spectral images of C IV and H2 emission lines for the region of Orion-Eridanus Superbubble (OES) are hereby presented and compared with the maps obtained in other wavelengths. While the region shows complex structures, consisting of hot gases and cold dust, a close examination reveals that the FUV emission in this region can be understood reasonably as the result of their interactions. We confirm the origin of most diffuse FUV continuum to be starlight scattered by dust, but we also find that the ionized gas also contributes 50-70% of the total FUV intensity in the regions of H_alpha arcs. We note the bright diffuse FUV continuum in the eastern part of the northern dust-rich region, and attribute it to the bright early-type stars more abundant in this region than in the west as the amount of dust itself does not seem to be much different across 'arc A' that separates the two regions. In addition, two P Cygni-type stars are identified in this eastern region and their peculiar spectral profiles around the C IV emission line are anifested in the scattered diffuse spectrum. Besides this, the C IV emission is generally enhanced at the boundaries of the hot X-ray cavities where thin dust regions are located, confirming the thermal interface nature of the origin of this cooling emission line. The morphology of the H2 emission shows a general correlation with dust extinction features but its intensity peaks are rather located in thin dust areas, off the peak dust regions. Furthermore, H2 emission is seen to be weak in the arc A region though the arc passes through the center of the dust-rich area. Hence, the H2 emission and dust features, together with those of X-ray and ion lines emissions, show stratified structure of arc A quite well, again confirming its thermal interface nature.

  • PDF

Technical Treatment on Foreign Invasive Marine Species of Living-things in ship′s Ballast-water (선박안정수의 해양외래침입생물체 처리 기술)

  • 소대화;장지도
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1563-1568
    • /
    • 2003
  • The introduction of invasive marine species of living things into new environments by ship's ballast water, attached to ships' hulls and via other vectors has been identified as one of the four greatest threats to the world's oceans by Global Environment Facility(GEF). Making use of the new technology of alpha-AL$_2$O$_3$ dielectric barrier layer, the strong electric-field gas discharge was introduced and obtained between micro-gap electrodes at high pressure (∼105㎩) of $O_2$ in air and $H_2O$ in seawater. The mixed air with $H_2O$ could be ionized and dissociated into large numbers of activated particles of OH, $O_2$+, O(1D), HO$_2$ and so on, and then dissolved into the ballast water to form dissolved hydroxyl radical with the concentration of ∼20mg/L. Therefore, the invasive marine species was treated effectively through the hydroxyl radical dissolved pipeline of ballast water by strong electric -field discharge.

Testing delayed AGN feedback using star formation rate measurements by SED fitting with JCMT/SCUBA-2 data

  • Kim, Changseok;Jadhav, Yashashree;Woo, Jong-Hak;Chung, Aeree;Baek, Junhyun;Lee, Jeong Ae;Shin, Jaejin;Hwang, Ho Seong;Luo, Rongxin;Son, Donghoon;Kim, Hyungi;Woo, Hyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2021
  • The impact of AGN on star formation is one of the main questions in AGN-galaxy coevolution studies. However, direct evidence of AGN feedback is still rare. One of the main obstacles is that various star formation rate (SFR) indicators are contaminated by AGN contribution. We present IR-based SFR measurements of a sample of 52 local (z<0.3) AGNs, which were selected based on kinematical properties of ionized gas outflows, using SED analysis with JCMT/SCUBA-2 data. First, we will compare IR-based SFR with other SFR indicators to check the reliability of the SFR indicators. Second, we will discuss the contribution of Mid-IR emission from hot dust of AGN torus by comparing SED fitting results with and without including AGN dust component. Finally, we will report the correlation between specific SFR (sSFR) and AGN activity (e.g., outflow strength or Eddington ratio) as evidence of no instantaneous feedback and discuss the implications of these results

  • PDF

PREPARATION OF AMORPHOUS CARBON NITRIDE FILMS AND DLC FILMS BY SHIELDED ARC ION PLATING AND THEIR TRIBOLOGICAL PROPERTIES

  • Takai, Osamu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-4
    • /
    • 2000
  • Many researchers are interested in the synthesis and characterization of carbon nitride and diamond-like carbon (DLq because they show excellent mechanical properties such as low friction and high wear resistance and excellent electrical properties such as controllable electical resistivity and good field electron emission. We have deposited amorphous carbon nitride (a-C:N) thin films and DLC thin films by shielded arc ion plating (SAIP) and evaluated the structural and tribological properties. The application of appropriate negative bias on substrates is effective to increase the film hardness and wear resistance. This paper reports on the deposition and tribological OLC films in relation to the substrate bias voltage (Vs). films are compared with those of the OLC films. A high purity sintered graphite target was mounted on a cathode as a carbon source. Nitrogen or argon was introduced into a deposition chamber through each mass flow controller. After the initiation of an arc plasma at 60 A and 1 Pa, the target surface was heated and evaporated by the plasma. Carbon atoms and clusters evaporated from the target were ionized partially and reacted with activated nitrogen species, and a carbon nitride film was deposited onto a Si (100) substrate when we used nitrogen as a reactant gas. The surface of the growing film also reacted with activated nitrogen species. Carbon macropartic1es (0.1 -100 maicro-m) evaporated from the target at the same time were not ionized and did not react fully with nitrogen species. These macroparticles interfered with the formation of the carbon nitride film. Therefore we set a shielding plate made of stainless steel between the target and the substrate to trap the macropartic1es. This shielding method is very effective to prepare smooth a-CN films. We, therefore, call this method "shielded arc ion plating (SAIP)". For the deposition of DLC films we used argon instead of nitrogen. Films of about 150 nm in thickness were deposited onto Si substrates. Their structures, chemical compositions and chemical bonding states were analyzed by using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and infrared spectroscopy. Hardness of the films was measured with a nanointender interfaced with an atomic force microscope (AFM). A Berkovich-type diamond tip whose radius was less than 100 nm was used for the measurement. A force-displacement curve of each film was measured at a peak load force of 250 maicro-N. Load, hold and unload times for each indentation were 2.5, 0 and 2.5 s, respectively. Hardness of each film was determined from five force-displacement curves. Wear resistance of the films was analyzed as follows. First, each film surface was scanned with the diamond tip at a constant load force of 20 maicro-N. The tip scanning was repeated 30 times in a 1 urn-square region with 512 lines at a scanning rate of 2 um/ s. After this tip-scanning, the film surface was observed in the AFM mode at a constant force of 5 maicro-N with the same Berkovich-type tip. The hardness of a-CN films was less dependent on Vs. The hardness of the film deposited at Vs=O V in a nitrogen plasma was about 10 GPa and almost similar to that of Si. It slightly increased to 12 - 15 GPa when a bias voltage of -100 - -500 V was applied to the substrate with showing its maximum at Vs=-300 V. The film deposited at Vs=O V was least wear resistant which was consistent with its lowest hardness. The biased films became more wear resistant. Particularly the film deposited at Vs=-300 V showed remarkable wear resistance. Its wear depth was too shallow to be measured with AFM. On the other hand, the DLC film, deposited at Vs=-l00 V in an argon plasma, whose hardness was 35 GPa was obviously worn under the same wear test conditions. The a-C:N films show higher wear resistance than DLC films and are useful for wear resistant coatings on various mechanical and electronic parts.nic parts.

  • PDF

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Application of Precipitate Flotation Technique to Separative Preconcentration and Determination of Arsenic in Water Samples (물시료 중 비소의 분리 정량을 위한 침전 부선기술의 응용)

  • Park Sang-Wan;Choi Hee-Seon;Kim Young-Man;Kim Young-Sang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.389-396
    • /
    • 1991
  • The pre-concentration and determination of ultratrace arsenic in water samples was studied by the precipitate flotation technique. The arsenic in 1.0l of water sample, in which all suspended materials were filtered out, was coprecipitated together with La(OH)$_3$ precipitates at pH 8.5${\pm}$0.1. After the precipitate was made to be hydrophobic by adding mixed surfactant of 1 : 8 mole ratio of sodium oleate and sodium dodecyl sulfate, it was floated with the aid of tiny bubbles of nitrogen gas in a flotation cell. The floated precipitate was quantitatively collected on a micropore glass filter by the suction, dissolved with small volume of 1.0M sulfuric acid, and accurately diluted to 25.00ml with a de-ionized water. Total arsenic was spectrophotometrically determinated by forming silver diethyldithiocarbamate complex of arsine generated from arsenic in the concentrated solution. The calibration curve was linear up to 20ng/ml in the original solution. Analytical results showed that contents of arsenic in a campus wastewater and a river water were 8.2ng/ml and l.0ng/ml, respectively, and their recoveries were 93${\%}$ and 90${\%}$ in water samples which a given amount of arsenic was added into. From above result, it could be concluded that this method was applicable to the determination of arsenic in various kinds of water at low ng/ml levels.

  • PDF

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.