• Title/Summary/Keyword: Ionic migration

Search Result 33, Processing Time 0.022 seconds

An Maximization of Ionic Wind Utilizing a Cylindrical Corona Electrode (관형 코로나 방전전극을 이용한 이온풍속의 최대화)

  • Jung, Jae-Seung;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2256-2261
    • /
    • 2010
  • A corona discharge system with needle point or wire type corona electrode has been well used as an ionic wind blower. The corona discharge system with a needle point electrode produces ions at lower applied voltage effectively. However, the corona discharge on the needle point electrode transits to the arc discharge at lower voltage, and it is hard to obtain the elevated electric field in the discharge airgap for enhancing the ion migration velocity due to the weak Coulomb force. A cylindrical corona electrode with sharp round tip is reported as one of effective corona electrode, because of its higher breakdown voltage than that of the needle electrode. A basic study, for the effectiveness of cylindrical electrode shape on the ionic wind generation, has been investigated to obtain an maximum wind velocity, which however is the final goal for the real field application of this kind ionic wind blower. In this paper, a parametric study for maximizing the ionic wind velocity utilizing the cylindrical corona electrode and a maximum ion wind velocity of 4.1 m/s were obtained, which is about 1.8 times higher than that of 2.3m/s obtained with the needle corona electrode from the velocity profile.

Transport Behaviour of Electroactive Species in Ionic Compounds: A Focus on Li Diffusion through Transition Metal Oxide in Current Flowing Condition

  • Lee, Sung-Jai;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • This article reviewed transport behaviours of electroactive species in ionic compounds, focusing on chemical diffusion of Li through the transition metal oxide in a current flowing condition. For this purpose, a distinction has been first briefly made between migration and diffusion with respect to current, driving force and charge of electroactive species considered. Then, the equations for chemical diffusion are derived theoretically in open-circuit and current flowing conditions. Finally, the experimental methods such as ac impedance spectroscopy and current (potential) transient techniques are described in details for characterising chemical diffusion. In addition, the role of the thermodynamic enhancement factor in chemical diffusion is discussed.

Temperature effect on multi-ionic species diffusion in saturated concrete

  • Damrongwiriyanupap, Nattapong;Li, Linyuan;Limkatanyu, Suchart;Xi, Yunping
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.149-171
    • /
    • 2014
  • This study presents the mathematical model for predicting chloride penetration into saturated concrete under non-isothermal condition. The model considers not only diffusion mechanism but also migration process of chloride ions and other chemical species in concrete pore solution such as sodium, potassium, and hydroxyl ions. The coupled multi-ionic transport in concrete is described by the Nernst-Planck equation associated with electro-neutrality condition. The coupling parameter taken into account the effect of temperature on ion diffusion obtained from available test data is proposed and explicitly incorporated in the governing equations. The coupled transport equations are solved using the finite element method. The numerical results are validated with available experimental data and the comparison shows a good agreement.

Effect of Water Temperature on Generation of Ion Migration (이온 마이그레이션 발생에 대한 수분온도의 영향)

  • Lee Deok Bo;Kim Jung Hyun;Kang Soo Keun;Kim Sang Do;Jang Seok Won;Lim Jae Hoon;Ryu Dong Soo
    • Journal of Applied Reliability
    • /
    • v.5 no.2
    • /
    • pp.261-272
    • /
    • 2005
  • In evaluation of electronic reliability on the PCB(Printed Circuit Board), electrochemical migration is one of main test objects. The phenomenon of electrochemical migration occurs In the environment of the high humidity and the high temperature under bias through a continuous aqueous electrolyte. In this paper, the generating mechanism of electrochemical migration is investigated by using water droll acceleration test under various waters. The waters used in the water drop test are city water, distilled water and ionic water. It found that the generated velocity of electrochemical migration depended on the temperature of water and the electrolyte quantity which included in the various waters.

  • PDF

A Theoretical Approach on the Migration of a Chelating Radionuclide in Porous Medium (다공성 매질에서의 착화하는 방사성핵종의 이동에 대한 이론적 접근)

  • Baik, Min-Hoon;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.49-59
    • /
    • 1992
  • A new model was developed in order to investigate the effects of chelating agents on the migration of a radionuclide in the form of ion or chelate. The migration behavior of the chelated radionuclide was analyzed by formulating a convective-dispersion transport equation which included a degradation of chelating agent and chelated radionuclide. The mathematical model was analytically solved and checked with the existing retardation factor. The results show that the migration velocity of the chelated radionuclide was much faster than the ionic one due to the decreased retardation. Therefore, it was concluded that a new remedial action should be developed to reduce the generation and release of chelating agents from the nuclear power plant into the environment.

  • PDF

Effect of Water Temperature on Generation of Ion Migration (이온 마이그레이션 발생에 대한 수분온도의 영향)

  • Lee Deok Bo;Kim Jung Hyun;Kang Soo Keun;Kim Sang Do;Jang Seok Won;Lim Jae Hoon;Ryu Dong Soo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.339-348
    • /
    • 2005
  • In evaluation of electronic reliability on the PCB(Printed Circuit Board),electrochemical migration is one of main test objects. The phenomenon of electrochemical migration occurs In the environment of the high humidity and the high temperature under bias through a continuous aqueous electrolyte. In this paper, the generating mechanism of electrochemical migration is investigated by using water drop acceleration test under various waters. The waters used in the water drop test are city water, distilled water and ionic water. It found that the generated velocity o of electrochemical migration depended on the temperature of water and the electrolyte quantity which included in the various waters.

  • PDF

Electrostatic Gibbs Free Energy and Solvation Number of Tetraalkylammonium Ions in Pyridine at 25${^{\circ}C}$ Obtained Using Conductance of Corresponding Ion

  • 김학성
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1347-1350
    • /
    • 1998
  • The equivalent conductances for tetraethylammonium perchlorate (TEAP), tetrabutylammonium perchlorate (TBAP), tetrahexylammonium perchlorate (THAP), and tetradodecylammonium perchlorate (TDDAP) were measured in pyridine (Py) at 25 ℃. The measured data have been analyzed by Onsager conductance theory. From Kohirausch's law of independent migration of ion, the limiting ionic conductances of tetraalkylammonium ions were determined using the limiting ionic conductance of perchlorate cited from reference. Using those and viscosity of pyridine, the Stokes and hydrodynamic radii of tetraethylammonium, tetrabutylammonium, tetrahexylammonium, and tetradodechylammonium ions were calculated. And, the salvation numbers of corresponding ions were also calculated using the hydrodynamic and crystallographic radii and the volume of one pyridine molecule. From those results, the model of salvation for those ions was extracted by comparison with the model for ion salvation. And the electrostatic Gibbs free energy (ΔGel) fitted for our salvation model was calculated. Those of corresponding ions in pyridine at 25 ℃ also increased with increasing radii of tetraalkylammonium ions. This trend of ΔGel was explained by the different ion-solvent interaction between tetraalkylammonium ion and pyridine.

Anodic Film Formation on Aluminum(IV) (양극산화피막 형성에 관한 연구(IV))

  • 한성호
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.3
    • /
    • pp.145-153
    • /
    • 1989
  • 양극산화 피막의 형성 반응에 대한 연구는 1930년대부터 되어 왔으며, 특히 High Field Conduction에 대한 물리학자들의 관심도는 아주 높아었다. 1960년대 이르러 비정질 구조에 대한 심도 있는 연구가 진행되면서, 여러 가지 이론적으로 풀지 못하는 실험실적 결과들에 대한 제한들이 나오게 되었고, Ionic Migration Process에 대한 Kinetics는 많은 발전을 보게 되었다. 최근까지의 연구결과, Ioinc Conduction Mechanism은 Anodic Film의 미세 결정 구조와 밀접한 연관성을 가진다는 결론에 도달하였고, 비정질 구조의 High Field하에서의 거동에 대한 새로운 분야의 연구가 진행되고 있다. 본 고에서는 반응 Mechanism에 관한 연구결과들을 1930년대 이후 어떻게 진행되어 설명 되었는가를 조명하므로서 실제 실험 결과의 해석게 도움이 되었으면 하는 바램이다.

  • PDF

Properties and Performance of Electroactive Acrylic Copolymer-Platinum Composite Modified with Sodium Montrnorillonite (Sodium Montrnorillonite로 개질한 아크릴계 IPMC의 물성과 전기 구동 특성)

  • Jeong, Han-Mo;Kim, Byung-Chon;La, Young-Soo
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.380-384
    • /
    • 2005
  • Fluoroalkyl methacrylate and acrylic acid were bulk radical copolymerized in the presence of pure sodium montmorillonite or macromer intercalated sodium montmorilonite to get a fluorinated acrylic ionomer/sodium montmorillonite composite, and their physical properties, such as X-ray diffraction pattern, tensile properties, and water uptake, were examined. These composites were used to preparean ionic acrylic polymer-platinum composite (IPMC). The current and deformation responses of these IPMCs by external voltage applied across the platinum electrodes deposited on both sides of IPMC showed that the cation migration from anode to cathode was suppressed in the presence of sodium montmorillonite, causing reduced current and deformation.

CP-EAPap biomimetic actuator fabrication and performance (CP-EAPap 생체모방 작동기의 제조 및 성능)

  • Li, Qubo;Kim, Jae-Hwan;Deshpande, S.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.360-363
    • /
    • 2005
  • Biomimetic actuators composed of cellophane with an electrically conducting polyaniline(PANI) film have been fabricated and tested in air ambience conditions doped with two different counter ions such as perchlorate (${ClO_4}^-$) and tetrafluoroborate (${BF_4}^-$). Fabrication of the trilayer CP//CELLOPHANE//CP substantially enhanced the tip displacement (13.2mm) compared to the small displacement (8.3mm) of the bilaye. CP//CELLOPHANE. The ion migration among layers is the main factor behind the expansion of cellophane, while the expansion/contraction of PANI are dependent on the redox reaction of the polymer. The displacement of the composite is dominated by the humidity content. This implies that the actuation principle is possibly due to the assistance of water existing.

  • PDF