• Title/Summary/Keyword: Ionic material

Search Result 359, Processing Time 0.028 seconds

The Solid-electrolyte Characteristics of Ag-doped Germanium Selenide for Manufacturing of Programmable Metallization Cell (Programmable Metallization Cell 제작을 위한 Ag-doped Germanium Selenide의 고체전해질 특성)

  • Nam, Ki-Hyun;Koo, Sang-Mo;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.86-87
    • /
    • 2008
  • In this study, we studied the nature of thin films formed by photodoping chalcogenide materials with for use in programmable metallization cell devices, a type of ReRAM. We investigated the resistance of Ag-doped chalcogenide thin films varied in the applied voltage bias direction from about 1 M$\Omega$ to several hundreds of $\Omega$. As a result of these resistance change effects, it was found that these effects agreed with PMC-RAM. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from the chalcogenide materials.

  • PDF

Conductivity measurements at low oxygen partial pressure of the stabilized $ZrO_{2}$ ceramics prepared by SHS

  • Soh, Dea-Wha;Korobova, Natalya
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.451-454
    • /
    • 2001
  • The ionic conductivity of cubic solid solutions in the system $Y_{2}O_{3}-ZrO_{2}$ prepared by SHS was examined. Conductivity-temperature data obtained at $1000^{\circ}C$ in atmosphere of low oxygen partial pressure ($10^{-40}$ atm) for $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions indicated that these materials could be reduced, the degree of reduction being related to the measuring electric field. At low impressed fields no reduction was observed. Thus, these conductivity data give a transference number for the oxygen ion in $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions greater than 0.99.

  • PDF

Electrochemical Performances of Lithium-ion Polymer Battery with Polyoxyalkylene Glycol Acrylate-based Gel Polymer Electrolyte (Polyoxyalkylene Glycol Acrylate기 Gel Polymer Electrolyte를 적용한 리튬이온폴리머전지의 전기화학적 특성)

  • Kim, Hyun-Soo;Kim, Sung-Il;Na, Seong-Hwan;Moon, Seong-In
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2005
  • In this work, a gel polymer electrolyte (GPE) was prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer LiCoO$_2$/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2${\times}$10$^{-3}$ S$.$$cm^{-1}$ / at room temperature. The GPE had good electrochemical stability up to 4.5 V vs. Li/Li$^{+}$. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability. The cells, also, passed a safety test such as the overcharge and nail-penetration test.t.

Peculiarities of gas sensing characteristics of SnO2-based sensors modified by SnO2-Au nanocomposites synthesized by SILD method

  • Korotcenkov, Ghenadii;Cho, Beong-Ki;Tolstoy, Valery;Gulina, Larisa B.;Han, Sang-Do
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.417-422
    • /
    • 2009
  • The problems associated with the synthesis, characterization and application of $SnO_2$-Au nanocomposites for the optimization of conductometric gas sensors have been discussed in this report. Nanocomposites have been synthesized on the surface of $SnO_2$ films using successive ionic layer deposition(SILD) method. It has been shown that the proposed approach to surface modification of metal oxide films is an excellent method for the optimization of the operating characteristics of $SnO_2$-based gas sensors, being developed for the detection of reducing gases as well as ozone.

A Study on Urethane-Based Gel Polymer Electrolyte for Lithium ion Battery (리튬이온전지용 Urethane기 겔폴리머전해질에 관한 연구)

  • 김현수;김성일;최관영;문성인;김상필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1033-1038
    • /
    • 2002
  • In this study, urethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte (GPE), and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/graphite cells were Prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor consisting of urethane acrylate (UA), hexanediol dimethacrylate (HDDA) and benzoyl peroxide (BPO) had a low viscosity relatively ionic conductivity of the gel polymer electrolyte with UA at room temperature and -20$\^{C}$ was ca. 4.5 $\times$ 10$\^$-3/S$.$cm$\^$-1/ and 1.7 x 10$\^$-3/ S$.$cm$\^$-1/, respectively GPR was stable electrochemically up to potential of 4.i V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/graphite cells showed good a high-rate and a low-temperature performance.

Correlation between leakage current and temperature Rise for artificially aged insulators (인위적 열화 애자에 대한 누설전류와 온도와의 관계)

  • Kim, J.T.;Kim, J.H.;Koo, J.Y.;Yoon, J.H.;Ham, G.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.186-188
    • /
    • 2001
  • In this study, the correlation between leakage currents and temperature rise was investigated for the more accurate diagnosis of bad insulator by use of the infrared camera. For the purpose, leakage currents and thermal images were measured for the artificially aged insulators using salt fog. From the results, it is concluded as follows ; in case of artificially aged insulators, the leakage. current was decreased with the duration of voltage application and was largely affected by humidity, which seems due to ionic conduction. Also, the correlation between temperature rise and leakage current was appeared to be quite linear, although it showed below linearity at large leakage current.

  • PDF

The Solid-electrolyte Characteristics of Ag-doped Germanium Selenide for Manufacturing of Programmable Metallization Cell (Programmable Metallization Cell 제작을 위한 Ag-doped Germanium Selenide의 고체전해질 특성)

  • Nam, Ki-Hyun;Chung, Hong-Bay
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.382-385
    • /
    • 2009
  • In this study, we studied switching characteristics of germanium selenide(Ge-Se)/silver(Ag) contact formed by photodoping for use in programmable metallization cell devices. We have been investigated the switching characteristics of Ag-doped chalcogenide thin films. Changed resistance range by direction of applied voltage is about $1\;M{\Omega}$ $\sim$ hundreds of $\Omega$. The cause of these resistance change can be thought the same phenomenon such as resistance variation of PMC-RAM. The results imply that the separated Ag-ions react the atoms or defects in chalcogenide thin films.

Ion Gel Gate Dielectrics for Polymer Non-volatile Transistor Memories (이온젤 전해질 절연체 기반 고분자 비휘발성 메모리 트랜지스터)

  • Cho, Boeun;Kang, Moon Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.759-763
    • /
    • 2016
  • We demonstrate the utilization of ion gel gate dielectrics for operating non-volatile transistor memory devices based on polymer semiconductor thin films. The gating process in typical electrolyte-gated polymer transistors occurs upon the penetration and escape of ionic components into the active channel layer, which dopes and dedopes the polymer film, respectively. Therefore, by controlling doping and dedoping processes, electrical current signals through the polymer film can be memorized and erased over a period of time, which constitutes the transistor-type memory devices. It was found that increasing the thickness of polymer films can enhance the memory performance of device including (i) the current signal ratio between its memorized state and erased state and (ii) the retention time of the signal.

Characteristics of Electric Doub1e Layer Capacitor using Polyvinylalcohol-Lithium Salts Solid Electrolyte (PVA-LiBF$_4$ 콤퍼지트 고체 전해질을 사용한 전기 이중층 커패시터의 특성)

  • 이운용;이광우;신달우;박흥우;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.211-214
    • /
    • 1998
  • The composite of polyvinylalcohol(PVA) and lithium salts(LiBF$_4$) is prepared for a solid-state electrolyte of electric double layer capacitor. The composite shows a good ionic conductivity. The solid-state electric double layer capacitor is made of PVA-LiBF$_4$ composite, activated carbon and etc.. As evaluation of characteristics of capacitor, capacitance change which measured by charge-discharge test with 2.2V~0V at 8$0^{\circ}C$ for 800 hours, was about 10%. The gravimetric and volumetric capacitance were 10.0 F/g~30.0 F/g and 16.0F/㎤~F/㎤, respectively.

  • PDF

Mixture of the Lithium Secondary Batteries and Analyses (리튬 2차전지용 전해액의 초성 및 비교 분석)

  • 임동규;김영호;조봉희;우병원;나두찬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.395-397
    • /
    • 1999
  • There are many efforts to improve electrolytes to satisfy the requirements of a lithium rechargeable battery. We have investigated a binary solvent mixture containing the electrolyte lithium salt($LiBF_4$, $LiPF_6$), that is conductive and electrochemically stable. Ionic conductivities were measured between -5 and $80^{\circ}C$, and cyclic voltammetry between 2.5 and 4.3 V were measured by SUS or platinum electrode.

  • PDF