• 제목/요약/키워드: Ionic conductors

검색결과 17건 처리시간 0.025초

전해절용 $Li_2O-V_2O_5-TeO_2$ 계 글라스 세라믹스의 전기적 특성 (Electrical Properties of $LI_2O-V_2O5-TeO_2$ Glasses for Solid State Electrolyte)

  • 이창희;박재현;손명모;이헌수;구할본;박희찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.304-304
    • /
    • 2006
  • Ternary tellurite glassy systems ($Li_2O-V_2O_5-TeO_2$) have been synthesised using Vanadium oxide as a network former and Lithium oxide as network modifier. The addition of a metal oxide makes them electric or mixed electric-ionic conductors, which are of potential interest as cathode materials for solid-state batteries. This glass-ceramics crystallized from the $Li_2O-V_2O_5-TeO_2$ system are particularly interesting, because they exhibit high conductivity (up to $5.63{\times}10^{-5}$ S/cm) at room temperature the glass samples were prepared by quenching the melt on the copper plate and the glass-ceramics were heat-treated at crystallizing temperature determined from differential thermal analysis (DTA). The electric DC conductivity result have been analyzed in terms of a small polaron-hopping model.

  • PDF

고체전해질용 $Li_2O-V_2O_5-P_2O_5$ 유리의 전기적 특성 (Electrical Properties of $Li_2O-V_2O_5-P_2O_5$ Glasses for Solid State Electrolyte)

  • 이창희;손명모;이헌수;구할본;박희찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.334-335
    • /
    • 2005
  • Ternary tellurite glassy systems ($Li_2O-V_2O_5-P_2O_5$) have been synthesised using Vanadium oxide as a network former and Lithium oxide as network modifier. The addition of a metal? oxide makes them electric or mixed electric-ionic conductors, which are of potential interest as cathode' materials for solid-state batteries. This glass-ceramics crystallized from the $Li_2O-V_2O_5-P_2O_5$ system are particularly interesting, because they exhibit high conductivity (up to $5.95\times10^{-4}$ S/cm) at room temperature. the glass samples were prepared by quenching the melt on the copper plate and the glass-ceramics were heat-treated at crystallizing temperature determined from differential thermal analysis (DTA). The electric D.C conductivity result have been analyzed in terms of a small polaron-hopping model.

  • PDF

$CuO-V_2O_5-TeO_2$계 결정화 유리의 전기적특성 (Electrical Properties of $CuO-V_2O_5-TeO_2$ Glass-Ceramics)

  • 이창희;손명모;이헌수;구할본;박희찬
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.842-844
    • /
    • 2004
  • Ternary tellurite glassy systems $(CuO-V_2O_5-TeO_2)$ have been synthesised using tellurium oxide as a network former and copper oxide as network modifier. The addition of a transition-matal oxide makes them electric or mixed electric-ionic conductors, which are of potential interest as cathode materials for solid-state batteries. This glass-ceramics crystallized from the $CuO-V_2O_5-TeO_2$ system are particularly interesting, because they exhibit high conductivity ( up to $6.03{\times}10^{-3}S/cm$) at room temperature. the glass samples were prepared by quenching the melt on the copper plate and the glass-ceramics were heat-treated at crystallizing temperature determined from differential thermal analysis (DTA). The electric D.C conductivity result have been analyzed in terms of a small polaron-hopping model.

  • PDF

조성비에 따른 Zr/BaCrO4 열지의 열적 특성 (Thermal Characteristics of Zr/BaCrO4 Heat Paper with Fuel/Oxidizer Compositions)

  • 임채남;이정민;박병준;강승호;정해원
    • 한국전기전자재료학회논문지
    • /
    • 제29권10호
    • /
    • pp.652-658
    • /
    • 2016
  • Thermal batteries use inorganic salt as electrolyte, which is inactive at room temperature. As soon as heat pellets are fired by an igniter, all the solid electrolytes are instantly melted into excellent ionic conductors. However, the abnormal heat generation by the igniter flame or heat pellets causes the thermal decomposition of the electrode and the melting of the anode, eventually leading to a thermal runaway, which results in overheating or explosion. The thermal runaway can be significantly reduced by the adoption of $Zr/BaCrO_4$ heat papers. In this study, the heat papers with various ratios of fuel (Zr) and oxidizer ($BaCrO_4$) were prepared by the paper-making process. We have investigated the calorimetric value, burning rate, and ignition sensitivity. The ignition test of heat pellets and the discharge test of thermal batteries were also carried out. At the composition of 40 wt.% of Zr, the heat papers showed the highest specific calorimetric value and burning rate. As a result, $Zr/BaCrO_4$ heat paper made by the paper-making process has shown the applicability for thermal batteries.

용융염 코팅이 열지에 미치는 영향 (Effect of Molten Salt Coating on Heat Papers)

  • 임채남;이정민;강승호;정해원
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.528-534
    • /
    • 2014
  • Thermal batteries are primary reserve batteries that use inorganic salt as electrolytes which are inactive at room temperature. The two principal heat sources that have been used in thermal batteries are heat paper and heat pellets. As soon as the heat paper, which is ignited by the initiator, in turn ignites the heat pellets, all the solid electrolytes are melted into excellent ionic conductors. However, the high combustion temperature by heat papers in thermal batteries causes thermal decomposition at the cathode, eventually leading to a thermal runaway. In this paper, we have attempted to prepare $Zr/BaCrO_4$ heat papers coated with KCl molten salt. We have also investigated the effect of a molten salt coating on the heat papers through the thermal characteristics such as calorimetric value, combustion temperature and burning rate. The calorimetric value and combustion temperature of heat papers were reduced with an increase in the molten salt coating. As a result, the molten salt coating on heat papers greatly reduced risk of a thermal runaway and improved the stability of thermal batteries.

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • 한국세라믹학회지
    • /
    • 제49권5호
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

K2NiF4 type 층상 페롭스카이트 구조 La(Ca)2Ni(Cu)O4-δ의 SOFC 양극 특성 및 결정구조 평가 (Structural and electrochemical characterization of K2NiF4 type layered perovskite as cathode for SOFCs)

  • 명재하;홍연우;이미재;전대우;이영진;황종희;신태호;백종후
    • 한국결정성장학회지
    • /
    • 제25권3호
    • /
    • pp.116-120
    • /
    • 2015
  • 혼합이온 전도체인 $K_2NiF_4$-type 산화물인 $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ 분말을 합성하여 결정구조 분석과 분말의 나노구조화에 따른 고체산화물 연료전지의 양극 성능을 비교 평가하였다. 이온 반경이 큰 Cu가 Ni 자리에 치환되어 Ni-O 팔면체 구조에서 c 축 방향으로 결정구조가 팽창하였으며, Ni-Cu의 Jahn-Teller 뒤틀림으로 산소이온 산화 환원 반응과 이온 전도도 특성에 영향을 주었다. 특히 나노구조의 $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ 분말의 경우 표면 촉매성능이 향상되어 단위 전지 성능 향상 결과를 얻을 수 있었다. Ni-YSZ 음극 지지체에 8YSZ 전해질을 dip-coating한 후 $La(Ca)_2Ni(Cu)O_{4+{\delta}}$ 분말을 양극으로 도포하여 얻은 SOFC 단위성능 측정 결과 $800^{\circ}C$에서 $1w/cm^2$의 최대 출력 값을 얻을 수 있었다.