• Title/Summary/Keyword: Ionic Mass Transfer

Search Result 25, Processing Time 0.021 seconds

Electrochemical Ionic Mass Transfer Correlation in Fluid-Saturated Porous Layer

  • Cho, Eun Su
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.814-817
    • /
    • 2015
  • A new ionic mass transfer correlation is derived for the fluid-saturated, horizontal porous layer. Darcy-Forchheimer model is used to explain characteristics of fluid motion. Based on the microscales of turbulence a backbone mass transfer relation is derived as a function of the Darcy-Rayleigh number, $Ra_D$ and the porous medium Schmidt number, $Sc_p$. For the Darcy's limit of $Sc_p{\gg}Ra_D$, the Sherwood number, Sh is a function of $Ra_D$ only. However, for the region of high $Ra_D$, Sh can be related with $Ra_DSc_p$. Based on the present backbone equation and the electrochemical mass transfer experiments which are electro plating or electroless plating, the new ionic mass transfer correlation is suggested in the porous media.

Ionic Mass Transport Correlation of Double-Diffusive Convection in Horizontal Fluid Layers

  • Kim, Min-Chan;Hyun, Myng-Taek;Yoon, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1396-1402
    • /
    • 2000
  • Here is investigated the characteristics of double-diffusive convection in thermally-stable stratified horizontal fluid layer. By employing an electrochemical technique, and adopting aqueous CuSO$_4$-H$_2$SO$_4$solution as electrolyte, experiments on ionic mass transfer have been conducted systematically. And, also a new mass transfer correlation in double-diffusive situations has been derived by extending the model of micro-scales of turbulence, which was proposed by Arpaci. The resulting correlation of the Sherwood number as a function of the thermal Rayleigh number was in good agreement with the present experimental results. The present study provides plausible understanding in controlling both mass and heat transfer rates for practical situations including double-diffusive convection.

  • PDF

Effect of Flow Rate on the Continuous Cycling Electrolytic Treatment Process for Silver Ion Containing Wastewater (은 함유 폐수의 연속 순환 전해처리 시 유량변화가 회수 공정에 미치는 영향)

  • Chung, Won-Ju;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.577-580
    • /
    • 2007
  • The influence of flow rate has been investigated on the treatment efficiency of continuous cycling electrolytic process employing artificial and actual photographic wastewater which containing silver ion. For artificial wastewater, the treatment efficiency of process was found to rise ca. three times when the flow rate of wastewater was increased from 3 mL/min to 15 mL/min. The process efficiency was doubled under the same condition regarding actual wastewater. The effect of flow rate on the treatment efficiency was observed to be altered according to the metal ionic form and solution composition. The coefficient of mass transfer was estimated using model equation, which verified that the raised treatment efficiency at higher flow rate was due to the increased mobility of ionic species.

Computer Simulation of Sintering and Grain Growth

  • Matsubara, Hideaki
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.324-328
    • /
    • 1998
  • This paper is aimed to study the computer simulation of sintering process for ceramics by Monte Carlo and molecular dynamics methods. Plural mechanisms of mass transfer were designed in the MC simulation of sintering process for micron size particles; the transfer of pore lattices for shrinkage and the transfer of solid lattices for grain growth ran in the calculation arrays. The MD simulation was performed in the case of nano size particles of ionic ceramics and showed the characteristic features in sintering process at atomic levels. The MC and MD simulations for sintering process are useful for microstructural design for ceramics.

  • PDF

Mass Transfer of Lysozyme Extraction Using Reversed Micelles (역미셀을 이용한 Lysozyme 추출에 대한 물질 전달)

  • 전병수;김석규;윤성옥;송승구
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.241-245
    • /
    • 2001
  • Mass transfer rates have been measured for the extraction of enzyme from aqueous solution into a reverse-micelle phase at $25^{\circ}C$. The 420 mL vessel was carefully designed to maintain a planar interface between the aqueous and solvent phases, so allowing precise measurement of interfacial area, has been investigated. Sodium di-2-ethylhexyl sulfosuccinate(AOT) was the surfactant used. Factors varied included: agitator speed, pH, ionic strength and surfactant concentration. Samples were taken from the solvent phase at 15min intervals, and the amount of enzyme extracted was measured by UV absorption at 280 nm. The observed Sherwood numbers for the aqueous phase $Sh_1$were correlated interms of the aqueous phase Reynolds number $Re_1$, and modified Schmidt number $Sc_1$. $Sh_1=0.664Re_1^{0.5}Sc_1^{0.33}$

  • PDF

Experimental study on enhancement of drying efficiency of organic solvent using ionic wind (이온풍을 이용한 유기용매의 건조 효율 향상에 관한 실험적 연구)

  • Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.1
    • /
    • pp.43-52
    • /
    • 2019
  • 'Ionic wind' is phenomenon induced by corona discharge which occurs when large electric potential is applied to electrodes with high curvature. The ionic wind has advantage that it could generate forced convective flow without any external energy like separate pump. In this study, 'pin-mesh' arrangement is utilized for experiments. First, optimization of configuration is conducted with local momentum of ionic wind behind the mesh. Empirical equation for prediction about velocity profile was derived using the measured results. Secondly, the enhancement of mass transfer rate of acetone with ionic wind was analyzed. Also, the drying efficiency using a fan which has same flow rate was compared with ionic wind for identification of additional chemical reaction. At last, the drying process of organic solvent was visualized with image processing. As a result, it was shown that the use of ionic wind could dry organic matter four times faster than the natural condition.

Relationship Between Mass Transfer and Degradation of Sorbed Phenanthrene in Goethite Catalyzed Fenton-like Oxidation Using Non-ionic/anionic Surfactant (Phenanthrene 의 goethite 촉매에 의한 Fenton 산화에 있어서 음이온/비이온 계면활성제의 영향)

  • Kim, Jeong-Hwan;Choi, Won-Ho;Kim, Jung-Hwan;Park, Joo-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.207-212
    • /
    • 2009
  • Surfactants were used as representative anionic and non ionic surfactants to investigate the effect of mass transfer on the mineral-catalyzed Fenton-like oxidation of sorbed phenanthrene. Mass transfer of phenanthrene on the oxide surface or interlayer between aqueous and solid phases was generated by surfactant addition. Apparent solubility of phenanthrene was increased as surfactant concentration increasesd. In tests using Tween 80, oxidation of phenanthrene decreased as apparent solubility increased. High apparent solubility was not responsible for oxidation of sorbed phenanthrene in the sand due to the surfactant acted as a scavenger of degradation. In tests with SDS, $H_{2}O_{2}$ decomposition rate in Fenton-like oxidation was decreased by complexation between goethite and SDS. However, in tests using 32 mM of SDS, efficiency of phenanthrene treatment increased compared to the test without SDS addition. Therefore, suitable amount of SDS addition could provide optimum condition for phenanthrene oxidation on the oxide surface or interlayer between aqueous and solid phase, and decrease $H_{2}O_{2}$ decomposition, and as a result, phenanthrene removal efficiency can be improved.

Electric-Field Induced Degradation of Ionic Solids

  • Chun, Ja-Kyu;Yoo, Han-Ill
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.48-55
    • /
    • 2012
  • Degradation of performance and life time of a functional material or device thereof is induced, to a great extent, by mass transfer in the material that is driven by various thermodynamic forces imposed intentionally or accidentally during its operation or service. The forces are any gradient of intensive thermodynamic variables, component chemical potentials, electrical potential, temperature, stresses, and the like. This paper reviews electric-field induced degradation phenomena in ionic solid compounds including insulation resistance degradation, crystal shift, microstructural alterations, compositional unmixing, and compound decomposition. Their inner workings are also discussed qualitatively.