• Title/Summary/Keyword: Ionic Liquid

Search Result 472, Processing Time 0.024 seconds

Toxin Produced by Pathogenic Vibrios Isolated from Sea Food (수산물에서 분리된 병원성 비브리오균의 용혈성독소)

  • CHANG Dong-Suck;SHINODA Sumio
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.2
    • /
    • pp.107-113
    • /
    • 1994
  • Among the currently recognized pathogenic vibrios, V. vulnificus and V. cholerae non O1 are the most serious bacteria from the point of view of sea food hygiene in Korea. In this paper, the authors compared the hemolytic activities of the crude hemolysin produced by V. vulnificus and V. cholerae non O1 isolated from shellfish collected in Chungmoo, Korea. The authors also attempted to improve the purification method of V. vulnificus hemolysin(VVH) and tried to make antiserum with the purified hemolysin. VVH was produced in abundance in heart infusion broth containing $2\%$ NaCl in a shaking cultivation process(140rpm) at $37^{\circ}C$ for 15 hours. While hemolysin production patterns of V. cholerae non O1 were quite different by the strain during the culture times compared with the V. vulnificus. Hemolytic activity of the VVH on sheep erythrocytes was stronger than those of rabbit, but hemolytic activities of the hemolysin produced by V. cholerae non O1 on rabbit erythrocytes were as much as twice as strong as on those of sheep and horse. VVH was purified by two steps of hydrophobic column chromatography on Phenyl-Sepharose HP with Fast Protein Liquid Chromatography(FPLC). Purification fold and yield of VVH was much improved by changing the elution buffer's pH from 6.0 to 9.8 and adding $1\%$ CHAPS(a zwitter ionic detergent) and $50\%$ ethylene glycol to the 10mM glycine buffer during the repeated hydrophobic column chromatography. Homogeneity of the purified hemolysin was shown by polyacrylamide gel electrophoresis. According to the five times repeated purification results, the specific activity was increased 27500 times and the yield was improved by $23.4\%$ on average. About $250{\mu}g$ of purified hemolysin was harvested from the 2400ml of culture supernatant of V. vulnificus. Molecular weight of VVH was estimated to be 50KDa by the SDS-PAGE and the neutralization scores of the obtained antiserum acting against VVH were $2000{\sim}8500$.

  • PDF

Impact of Application Rate of Non-ionic Surfactant Mixture on Initial Wetting and Water Movement in Root Media and Growth of Hot Pepper Plug Seedlings (비이온계 계면활성제 혼합물의 처리농도가 상토의 수분 보유 및 고추 플러그묘의 생장에 미치는 영향)

  • Choi, Jong-Myung;Moon, Byung-Woo
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • In developing soil wetting agent using polyoxyethylene nonylphenyl ether (PNE) and polyoxyethylene castor oil (1:1; v/v), the effect of application rates on changes in concentration of PNE, initial wetting of peatmoss + perlite (7:3) medium, and growth of hot pepper (Capsicum annuum L. 'Knockwang') plug seedlings were investigated. The elevation of application rates of wetting agent increased the amount of water retained by the root media. The treatment of 2.5 $mL{\cdot}L^{-1}$ showed similar water retention to + control ($AquaGro^L$ 3.0 $mL{\cdot}L^{-1}$). Most of the liquid wetting agent (LWA) incorporated during the medium formulation leached out in the first and second irrigation, then it decreased gradually until 10 times in irrigation. In investigation of the influence of LWA on position of water infiltrating into root media, the vertical water movements in treatments of 0.5, 1.0, and 1.5 $mL{\cdot}L^{-1}$ were much faster than those in 0.0 $mL{\cdot}L^{-1}$ (-control), but relative speed of water movement decreased by the elevation in application rate of LWA to 2.0 or 2.5 $mL{\cdot}L^{-1}$. The evaporative water loss of root media that to contained various rate of LWA and irrigated to reach container capacity was the fastest in -control among the treatments and it delayed as the application rate of LWA was elevated. The plant height of 22.2 cm in 0.5 $mL{\cdot}L^{-1}$ and stem diameter of 3.26 mm in 1.0 $mL{\cdot}L^{-1}$ were the highest among the treatments tested. The treatment of 1.0 $mL{\cdot}L^{-1}$ also had the heaviest fresh and dry weights such among treatments tested as 3.08 g and 0.861 g per plant, respectively. The elevated application rate over than 1.5 $mL{\cdot}L^{-1}$ resulted in decreased seedling growth. The results mentioned above indicate that optimum application rate of LWA is 1.0 $mL{\cdot}L^{-1}$.