• Title/Summary/Keyword: Ionic Conductivity

Search Result 583, Processing Time 0.027 seconds

The Study of Evaluation Methods of Electrolyte for Li/SO2Cl2 Battery (Li/SO2Cl2 전지용 전해액의 평가 방법 연구)

  • Roh, Kwang Chul;Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Ko, Young-Ok;Lee, Jeong-Do;Chung, Kwang-il;Shin, Dong-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.67-71
    • /
    • 2011
  • The cathodic active material of $Li/SO_2Cl_2$ battery is $SO_2Cl_2$, which is the solvent of an electrolyte. It is referred to as a catholyte, a compound word of cathode and electrolyte. As the battery discharges, the catholyte burns out. And thus, the characteristics of the $SO_2Cl_2$ in the battery determine the capacity. In addition, the transition minimum voltage (TMV) and the voltage delay deviation of $Li/SO_2Cl_2$ battery are due to the passivation film formed by the reaction between an electrolyte and Li. Impurities in the electrolyte, such as moisture or heavy metal ions, will accelerate the growth of the passivation film. Therefore, a technology must be established to purify an electrolyte and to ensure the effectiveness of the purification method. In this research, $LiAlCl_4/SO_2Cl_2$ was manufactured using $AlCl_3$ and LiCl. Its concentration, the amount of moisture, and the metal amount were evaluated using an ionic conductivity meter, a colorimeter, and FT-IR.

Preparation and Characterization of a Cross-Linked Anion-Exchange Membrane Based on PVC for Electrochemical Capacitor (전기화학 캐퍼시터용 PVC기반 가교 음이온교환 멤브레인의 제조 및 특성)

  • Kim, Young-Ji;Kim, Soo-Yeoun;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.903-913
    • /
    • 2021
  • Three-type PVC membranes denoted by AEM-1, AEM-2, and AEM-3 with a cross-linked anion-exchange group were prepared by substitution reaction of PVC with triethyldiamine (TEDA), 1,4-dimethylpiperazine (DMP), and 1,4-bis(imidazol-1-ylmethyl)benzene (BIB) in cyclohexanone, respectively. We confirmed the successful preparation of the AEM-1, AEM-2, and AEM-3 via ionic conductivity (S/cm), water uptake (%), contact angle, ion-exchange capacity (meq/g), thermal properties, SEM and XPS analysis, respectively. The electrochemical capacitor experiments using PVC membrane with cross-linked anion-exchange group in organic electrolytes were performed. The prepared AEM-1, AEM-2 AEM-3 have a good stability by charge and discharge performance in organic electrolyte. As a result, the AEM-2 and AEM-3 membrane based on PVC prepared by the solvent casting method after substituent reaction is suitable for the use as a separator in organic electrochemical capacitor (supercapacitor).

A Review on Ultrathin Ceramic-Coated Separators for Lithium Secondary Batteries using Deposition Processes (증착 기법을 이용한 리튬이차전지용 초박막 세라믹 코팅 분리막 기술)

  • Kim, Ucheol;Roh, Youngjoon;Choi, Seungyeop;Dzakpasu, Cyril Bubu;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.134-153
    • /
    • 2022
  • Regardless of a trade-off relationship between energy density and safety, it is essential to improve both properties for future lithium secondary batteries. Especially, to improve the energy density of batteries further, not only thickness but also weight of separators including ceramic coating layers should be reduced continuously apart from the development of high-capacity electrode active materials. For this purpose, an attempt to replace conventional slurry coating methods with a deposition one has attracted much attention for securing comparable thermal stability while minimizing the thickness and weight of ceramic coating layer in the separator. This review introduces state-of-the-art technology on ceramic-coated separators (CCSs) manufactured by the deposition method. There are three representative processes to form a ceramic coating layer as follows: chemical vapor deposition (CVD), atomic layer deposition (ALD), and physical vapor deposition (PVD). Herein, we summarized the principle and advantages/disadvantages of each deposition method. Furthermore, each CCS was analyzed and compared in terms of its mechanical and thermal properties, air permeability, ionic conductivity, and electrochemical performance.

Effect of Soil Salinity for Ecological Restoration in the Reclaimed Area of Seasides (임해매립지의 생태계 복구를 위한 토양중 염류의 활성도 분석)

  • Chang, Kwan-Soon;Kim, Hyong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.147-154
    • /
    • 1999
  • This study was carried out to obtain reasonable management method of salt-affected soil for ecological restoration in the reclaimed land. Chemical properties of reclaimed soil was investigated base on reclamation years. Ionic acitivity in soil and satruration extract were analyzed to estimate the effect of salt interception by planting ground treatment. The soil porperties of reclaimed land was saline-sodic soil with $11.3dSm^{-1}$ of electrical conductivity, 34.8% of exchangeable sodium percent in first reclamation year. Electrical conductivity, exchangeable sodium and exchangeable chlorine were remarkedly decreased during six years after reclamation but chemical properties of reclaimed soil was unsuitable status for tree growth. Exchangeable sodium perecnt was higher in the neighborhood parks and street tree sites than in the buffer green spaces and was higher in subsoil than in topsoil of profile in all sites. Content of soduim, chloride and sulfate in saturation extract were more than other ions. Content of soduim and chloride were higher in the neighborhood parks and street tree sites than in the buffer green spaces and were higher in subsoil than in topsoil. Content of calcium plus magnesium of soil was higher in the buffer green space than in the neighborhood park and street tree but content of calcium and magnesium in saturation extract were higher, as result from exchangeable sodium, in the neighborhood parks and street tree sites than in the buffer green spaces. Concentration of salt in soil showed the difference with mounding height and planting ground treatment. The lowest concentration of salt appeared in buffer green spaces and street tree sites was the highest. Salt interception by mounding height in the same planting ground treatment was more effective 120cm of mounding height than 70cm of mounding height.

  • PDF

The Washing Effect of Precipitation on PM10 in the Atmosphere and Rainwater Quality Based on Rainfall Intensity (강우 강도에 따른 대기 중 미세먼지 저감효과와 강우수질 특성 연구)

  • Park, Hyemin;Byun, Myounghwa;Kim, Taeyong;Kim, Jae-Jin;Ryu, Jong-Sik;Yang, Minjune;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1669-1679
    • /
    • 2020
  • This study examines the washing effect of precipitation on particulate matter (PM) and the rainwater quality (pH, electrical conductivity (EC), water-soluble ions concentration). Of six rain events in total, rainwater samples were continuously collected every 50 mL from the beginning of the precipitation using rainwater collecting devices at Pukyong National University, Busan, South Korea, from March 2020 to July 2020. The collected rainwater samples were analyzed for pH, EC, and water-soluble ions (cations: Na+, Mg2+, K+, Ca2+, NH4+, and anions: Cl-, NO3-, SO42-). The concentrations of particulate matter were continuously measured during precipitation events with a custom-built PM sensor node. For initial rainwater samples, the average pH and EC were approximately 4.3 and 81.9 μS/cm, and the major ionic components consisted of NO3- (5.4 mg/L), Ca2+ (4.2 mg/L), Cl- (4.1 mg/L). In all rainfall events, rainwater pH gradually increased with rainfall duration, whereas EC gradually decreased due to the washing effect. When the rainfall intensities were relatively weak (<5 mm/h), PM10 reduction efficiencies were less than 40%. When the rainfall intensities were enhanced to more than 7.5 mm/h, the reduction efficiencies reached more than 60%. For heavy rainfall events, the acidity and EC, as well as ions concentrations of initial rainwater samples, were higher than those in later samples. This appears to be related to the washing effect of precipitation on PM10 in the atmosphere.

The Applications of a Multi-metric LEHA Model for an Environmental Impact Assessments of Lake Ecosystems and the Ecological Health Assessments (호수생태계 환경영향평가를 위한 LEHA 다변수 모델 적용 및 생태건강성 평가)

  • Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.483-501
    • /
    • 2012
  • The purpose of this study was to apply a multi-metric model of Lentic Ecosystem Health Assessments(LEHA) for environmental impact assessments of Cheongpyung Reservoir during 2005 - 2006 and assessed the ecological model values. The ecosystem model of LEHA was composed of eleven metrics such as biological parameters($B_p$), physical parameters($P_p$), and chemical parameters($C_p$), and determined the rank of ecological health by the criteria. The variables of $B_p$ were metrics of % sensitive species($M_2$, NMS) and insectivore species($M_5$, % $I_n$), which decrease as the water quality degradates, and these metric values were low as 1.5% and 32.4%, respectively. In contrast, the proportions of tolerant species and omnivore species as the other $B_p$ parameters were 43% and 62%, respectively, which indicate a degradation and disturbance of the ecosystem. Riparian vegetation coverage($M_9$, % $V_c$) as a variable of $P_p$, were higher in the 2nd than 1st survey, and decreased toward the dam site from the headwaters. This was due to a habitat simplification(modifications) by frequent bottom dredging of sand and rocks. The variables of $C_p$ were two metrics of specific conductivity($M_{10}$, $C_I$) as an indicator of ionic contents(cations and anions) and the Trophic State Index(TSI) based on chlorophyll-a($M_{11}$, $TSI_{CHL}$) as an indicator of trophic state. These metric values of $C_p$ had high temporal variations, but low spatial variations on the main axis of the reservoir along with the ecological health of a good condition. The environmental impact assessments using the LEHA multi-metric model indicated that the model values of LEHA averaged 30.7 in 1st survey(fair - poor condition) vs. 28 in 2nd survey(poor condition), indicating a temporal variation of the ecological health. The model values of LEHA showed a minimum(28) in the lacustrine zone(S5) and ranged from 29 to 30 in the other locations sampled, indicating a low longitudinal variation. Overall, environmental impact assessments, based on LEHA model, suggest that chemical water quality conditions were in good, but biological conditions were disturbed due to habitat modifications by frequent dredgings in the system.

Spatio-temporal Water Quality Variations at Various Streams of Han-River Watershed and Empirical Models of Serial Impoundment Reservoirs (한강수계 하천에서의 시공간적 수질변화 특성 및 연속적 인공댐호의 경험적 모델)

  • Jeon, Hye-Won;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.378-391
    • /
    • 2012
  • The objective of this study was to determine temporal patterns and longitudinal gradients of water chemistry at eight artificial reservoirs and ten streams within the Han-River watershed along the main axis of the headwaters to the downstreams during 2009~2010. Also, we evaluated chemical relations and their variations among major trophic variables such as total nitrogen (TN), total phosphorus (TP), and chlorophyll-a (CHL-a) and determined intense summer monsoon and annual precipitation effects on algal growth using empirical regression model. Stream water quality of TN, TP, and other parameters degradated toward the downstreams, and especially was largely impacted by point-sources of wastewater disposal plants near Jungrang Stream. In contrast, summer river runoff and rainwater improved the stream water quality of TP, TN, and ionic contents, measured as conductivity (EC) in the downstream reach. Empirical linear regression models of log-transformed CHL-a against log-transformed TN, TP, and TN : TP mass ratios in five reservoirs indicated that the variation of TP accounted 33.8% ($R^2$=0.338, p<0.001, slope=0.710) in the variation of CHL and the variation of TN accounted only 21.4% ($R^2$=0.214, p<0.001) in the CHL-a. Overall, our study suggests that, primary productions, estimated as CHL-a, were more determined by ambient phosphorus loading rather than nitrogen in the lentic systems of artificial reservoirs, and the stream water quality as lotic ecosystems were more influenced by a point-source locations of tributary streams and intense seasonal rainfall rather than a presence of artificial dam reservoirs along the main axis of the watershed.

Snow Influence on the Chemical Characteristics of Winter Precipitation (강설이 겨울철 강수의 화학적 특성에 미치는 영향)

  • Kang, Gong-Unn;Kim, Nam-Song;Oh, Gyung-Jae;Shin, Dae-Yewn;Yu, Du-Cheol;Kim, Sang-Baek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.113-125
    • /
    • 2007
  • To know the differences in ionic compositions in rain and snow as well as snow influence on the chemical characteristics of winter precipitation, precipitation samples were collected by the wet-only automatic precipitation sample, in winter(November-February) in the Iksan located in the northwest of Chonbuk from 1995 to 2000. The samples were analyzed for concentrations of water-soluble ion species, in addition to pH and electrical conductivity. The mean pH of winter precipitation was 4.72. According to the type of winter precipitation, the mean pH of rain was 4.67 and lower than 5.05 in snow. The frequencies of pH below 5.0 in rain were about 73%, while those in snow were about 30%. Snow contained 3 times higher concentrations of sea salt ion components originated from seawater than did rain in winter, mainly $Cl^-,\;Na^+$, and $Mg^{2+}$. Neglecting sea salt ion components, $nss-SO_4^{2-}$ and $NO_3^-$ were important anions and $NH_4^+$ and $nss-Ca^{2+}$ were important cations in both of rain and snow. Concentrations of $nss-SO_4^{2-}$ was 1.3 times higher in rain than in snow, while those of $nss-Ca^{2+}$ and $NO_3^-$ were 1.5 and 1.3 times higher in snow, respectively. The mean equivalent concentration ratio of $nss-SO_4^{2-}/NO_3^-$ in winter precipitation were 2.4, which implied that the relative contribution of sulfuric and nitric acids to the precipitation acidity was 71% and 29%, respectively. The ratio in rain was 2.7 and higher than 1.5 in snow. These results suggest that the difference of $NO_3^-$ in rain and snow could be due to the more effective scavenging of $HNO_3$ vapor than particulate sulfate or nitrate by snow. The lower ratio in snow than rain is consistent with the measurement results of foreign other investigators and with scavenging theory of atmospheric aerosols. Although substantial $nss-SO_4^{2-}$ and $NO_3^-$ were observed in both of rain and snow, the corresponding presence of $NH_4^+,\;nss-Ca^{2+},\;nss-K^+$ suggested the significant neutralization of rain and snow. Differences in chemical composition of non-sea salt ions and neutralizing rapacity of $NH_4^+,\;nss-Ca^{2+}$, and $nss-K^+$ between rain and snow could explain the acidity difference of rain and snow. Snow affected that winter precipitation could be less acidic due to its higher neutralizing rapacity.

Physico-chemical Characteristics and In situ Fish Enclosure Bioassays on Wastewater Outflow in Abandoned Mine Watershed (폐광산 지역의 유출수에 대한 이.화학적 수질특성 및 Enclosure 어류 노출시험 평가)

  • An, Kwang-Guk;Bae, Dae-Yeul;Han, Jeong-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.218-231
    • /
    • 2012
  • The objectives of this study were to evaluate the physico-chemical water quality, trophic and tolerance guilds in the control ($C_o$) and impacted streams of the abandoned mine, along with the ecological health, using a multimetric health model and physical habitat conditions of Qualitative Habitat Evaluation Index (QHEI), during the period of three years, 2005~2007. Also, eco-toxicity ($EE_t$) enclosure tests were conducted to examine the toxic effects on the outflows from the mine wastewater, using the sentinel species of Rhynchocypris oxycephalus, and we compared the biological responses of the control ($C_o$) and treatment (T) to the effluents through a Necropybased Health Assessment Index ($N_b$-HAI). Tissue impact analysis of the spleen, kidney, gill, liver, eyes, and fins were conducted in the controlled enclosure experiments (10 individuals). According to the comparisons of the control ($C_o$) vs. the treatment (T) in physicochemical water quality, outflows from the abandoned mine resulted in low pH of 3.2, strong acid wastewater, high ionic concentrations, based on an electrical conductivity, and high total dissolved solid (TDS). Physical habitat assessments, based on Qualitative Habitat Evaluation Index (QHEI) did not show any statistical differences (p>0.05) in the sampling sites, whereas, the $M_m$-EH model values in a multimetric ecological health ($M_m$-EH) model of the Index of Biological Integrity (IBI), using fish assemblages, were 16~20 (fair condition) in the control and all zero (0, poor condition) in the impacted sites of mine wastewater. In addition, in enclosure eco-toxicity ($EE_t$) tests, the model values of $N_b$-HAI ranged between 0 and 3 in the controls during the three years, indicating an excellent~good condition (Ex~G), and were >100 (range: 100~137) in the impacted sites, which indicates a poor condition (P). Under the circumstances, organ tissues, such as the liver, kidney, and gills were largely impaired, so that efficient water quality managements are required in the outflow area of the abandoned mine watershed.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.