• Title/Summary/Keyword: Ion-exchange technology

Search Result 561, Processing Time 0.032 seconds

Treatment of Simulated Soil Decontamination Waste Solution by Ferrocyanide-Anion Exchange Resin Beads (Ferrocyanide-음이온 교환수지에 의한 모의 토양제염 폐액 처리)

  • Won Hui Jun;Kim Min Gil;Kim Gye Nam;Jung Chong Hun;Park Jin Ho;Oh Won Zin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.41-47
    • /
    • 2005
  • Preparation of ferrocyanide-anion exchange resin and adsorption test of the prepared resin on the Cs$^{+}$$ion were performed. Adsorption capability of the prepared resin on the Cs$^{+}$ion in the simulated citric acid based soil decontamination waste solution was 4 times greater than that of the commercial cation exchange resin. Adsorption equilibrium of the prepared resin on the Cs$^{+}$ion reached within 360 minutes. Adsorption capability on the Cs$^{+}$ion became to decrease above the necessary Co$^{2+}$ion concentration in the experimental range. Recycling test of the spent ion exchange resin by the successive application of hydrogen peroxide and hydrazine was also performed. It was found that desorption of Cs$^{+}$ion from the resin occurred to satisfy the electroneutrality condition without any degradation of the resin.

  • PDF

THE TRANSFER OF CHLORIDE ION ACROSS ANION EXCHANGE MEMBRANE

  • Yu, Zemu;Wang, Hanming;Wang, Erkang
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.597-601
    • /
    • 1995
  • The transfer of chloride ion across an anion exchange membrane (AEM) was investigated by cyclic voltammetry (CV) and electrochemical impedance spectra. In CV experiment, when the size of the hole in membrane was much smaller than the distance between membrane holes, the Cl anion transfer showed steady state voltammetric behavior. Each hole in membrane can be regarded as a microelectrode and the membrane was equivalent to a microelectrode array in this condition. When the hole in membrane was large or the distance between membrane holes was small, the CV curve of the Cl anion transfer across membrane showed peak shape, which attributed to linear diffusion. In ac impedance measurement, the impedance spectrum of the membrane system was composed of two semicircles at low de bias, corresponding to the bulk characteristics of the membrane and the kinetic process of ion transfer, respectively. The bulk membrane resistance increases with increasing dc bias and only one semicircle was observed at higher dc bias. The parameters related to kinetic and membrane properties were discussed.

  • PDF

Durability enhancement of anion exchange membranes for water electrolysis: an updated review

  • Akter, Mahamuda;Park, Jong-Hyeok;Kim, Beom-Seok;Lee, Minyoung;Jeong, Dahye;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.319-327
    • /
    • 2022
  • Ion exchange membranes have been developed from laboratory tools to industrial products with significant technical and trade impacts in the last 70 years. Today, ion exchange membranes are successfully applied for water and energy for different electro-membrane processes. Hydrogen could be produced by electrochemical water splitting using renewable energy, for example, solar, biomass, geothermal and wind energy. This review briefly summarizes the recent studies reporting the state-of-the-art anion-exchange membrane water electrolysis, especially focusing on the enhancement of the durability of anion-exchange membranes. Anion-exchange membrane water electrolysis could be used as inexpensive non-noble metal electrocatalysts that are capable of producing low cost of hydrogen. However, the main challenge of anion-exchange membrane water electrolysis is to increase the performance and durability. In this mini review, the limiting factors of the durability and the technology enhancing the durability will be discussed for anion exchange membrane water electrolysis.

Recent Developments in Characterization of Ion-Exchange Membrane Processes: Impedance Spectroscopy for a Concentration Polarized Boundary Layer

  • Park, Jin-Soo;Moon, Seung-Hyeon
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.03a
    • /
    • pp.1-11
    • /
    • 2004
  • Ion-exchange membranes have been widely used in various applications such as diffusion dialysis, electrolysis, electrodialysis, fuel cell etc [1-2]. When an electric current passes through the membrane system, the current is carried by both positive and negative ions in the bulk solution phases, whereas it is carried mainly by the counter-ions in the membrane. (omitted)

  • PDF

Influence of Quaternary Ammonium Anion Exchange Moieties onto Mechanical Properties of Radiation-grafting Anion Exchange Membranes (방사선그라프팅 음이온교환막의 기계적 물성에 대한 4차 암모늄 음이온교환기의 영향)

  • Ko, Beom-Seok;Sohn, Joon-Yong;Shin, Junhwa
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.49-54
    • /
    • 2012
  • Various anion exchange membranes were prepared by radiation graft copolymerization of vinylbenzyl chloride onto fluorinated films and subsequent quaternization with various tertiary amines such as trimethylamine, N,N-dimethylbuthylamine, N,N-dimethylaniline, and N-methylpiperidine. The quaternizations of the anion exchange membranes were confirmed by measuring of the ion exchange capacities of the membranes. The mechanical properties and the water uptakes were also measured. The elongation at break was found to be largely dependent on the fluorinated film, the quateranry ammonium, and the degree of grafting. The results indicate that the poly (ethylene-alt-tetrafluoroethylene) with quaternized trimethylamine moiety exhibits higher flexible property compared to the other prepared anion exchange membranes.

Preparation of Poly(ethylenimine) Anionic Exchnage Membrane Impregnated in Porous Polyethylene Membranes (다공성 폴리에틸렌 막에 폴리에틸렌이민을 함침 시킨 음이온교환막의 제조 연구)

  • Park, Chan-Jong;Kim, Il-Hyung;Kim, Sung-Pyo;Lee, Hak-Min;Cheong, Seong-Ihl;Choi, Ho-Sang;Rhim, Ji-Won
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2011
  • In this study, the anionic exchange membranes were prepared through the impregnation of polyethylenimine (PEI) into porous polyethylene (PE) separator and then crosslinking with isophrhaloyl dichloride (IPC). To characterize the resulting membranes, the contact angles, FT-IR, ion exchnage capacity and ion conductivity were measured. The amide group is produced the reaction between amines in PEI and -COCl in IPC. In case of ion exchange capacity, 1.96 meq./g dry membrane at the reaction time, 30 sec was decreased to 1.14 meq./g dry membrane at 600 sec reaction time. The ion conductivity, $9.15{\times}10^{-2}S/cm$ at 30 sec reaction time, was obtained.

Comparative Study on Recovery of Nickel by Ion Exchange and Electrodialysis (이온교환과 전기투석을 이용한 니켈회수의 비교연구)

  • Sim, Joo-Hyun;Seo, Hyung-Joon;Seo, Jae-Hee;Kim, Dae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.640-647
    • /
    • 2006
  • It is difficult to treat wastewater involved in heavy metal in electroplating industry. Recently, many industries adopt the clean technology to prevent production of pollutant in the process or reuse after the appropriate pollutant treatment. In this study, we estimate the ability of recovery of nickel and the efficiency using lab-scale ion exchange and electrodialysis process with electroplating industry wastewater. In the ion exchange experiments with 5 types of resin, the result showed that S 1467(gel-type strong acidic cation exchange resin) has the highest exchange capacity. And it showed that the 4 N HCl has the highest in regeneration efficiency and maximum concentration in the regeneration experiments with various kinds md concentration of the regenerant. During the electrodialysis experiments, we varied the current density, the concentration of electrode rinse solution, the flow rate of concentrate and electrode rinse solution in order to find the optimum operating condition. As a result, we obtained $250A/m^2$ of current density, 2 N $H_2SO_4$ of concentration of electrode rinse solution, 30 mL/min of flow rate of concentrate and electrode rinse solution as the best operating conditions. We performed the scale-up experiments on the basis of ion exchange and electrodialysis experiments. And we obtained the experimental result that exchange capacity of S 1467 was 1.88 eq/L resin, and regeneration efficiency was 93.7% in the ion exchange scale-up experiment, we also got the result that concentration and dilution efficiency increased, and current efficiency kept constant in the scale-up experiments.

The study on the separation characteristics of heavy metal ion by inorganic oxides and ion exchange resin (무기산화물 및 이온교환수지에 의한중금속 이온 분리특성 연구)

  • Dan, Cheol Ho;Kim, eong Ho;Yang, Hyun Soo
    • Clean Technology
    • /
    • v.12 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • The effectiveness of inorganic oxides (DT-30), anionic exchange resin (DT-60) and carbon absorbent (DT-80, DT-90) on the equilibrium and continuous separation characteristics and removal of cobalt, cesium and iodide ion in the waste water was investigated. As a result, DT-30, DT-80 or DT-90, and DT-60 showed excellent separation properties on the cesium, cobalt and iodide respectively. In the equilibrium experiment, the adsorption amount of cesium for DT-30 increased with temperature, but increasd largely with pH. In case of DT-80, adsorption of cobalt was depended on pH but was not influenced by temperature. In the continuous system by passing a heavy metal ion solution through the ion exchange tower, DT-30, DT-90 and DT-60 showed good separation characteristic for cesium, cobalt and iodide respectively. In this case, separation characterization of DT-30 on the cesium and of DT-60 on the iodide were better than that of DT-90 on the cobalt. From the experiment on the effect of impurities on the ion exchange characteristics, impurities such as surfactant and oil did not influence the efficiency of DT-90. In the mean while, ion separation capacity of DT-30 were decreased largely by impurities such as surfactant and oil. Also, surfactant had a strong influence on the effectiveness of DT-60. Accordingly, it turned out to be very important thing that impurities should be removed in the preprocessing stage.

  • PDF

Glass strengthening and coloring using PIIID technology

  • Han, Seung-Hee;An, Se-Hoon;Lee, Geun-Hyuk;Jang, Seong-Woo;Whang, Se-Hoon;Yoon, Jung-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.178-178
    • /
    • 2016
  • Every display is equipped with a cover glass to protect the underneath displaying devices from mechanical and environmental impact during its use. The strengthened glass such as Gorilla glass.$^{TM}$ has been exclusively adopted as a cover glass in many displays. Conventionally, the strengthened glass has been manufactured via ion-exchange process in wet salt bath at high temperature of around $500^{\circ}C$ for hours of treatment time. During ion-exchange process, Na ions with smaller diameter are substituted with larger-diameter K ions, resulting in high compressive stress in near-surface region and making the treated glass very resistant to scratch or impact during its use. In this study, PIIID (plasma immersion ion implantation and deposition) technique was used to implant metal ions into the glass surface for strengthening. In addition, due to the plasmonic effect of the implanted metal ions, the metal-ion implanted glass samples got colored. To implant metal ions, plasma immersion ion implantation technique combined with HiPIMS method was adopted. The HiPIMS pulse voltage of up to 1.4 kV was applied to the 3" magnetron sputtering targets (Cu, Ag, Au, Al). At the same time, the sample stage with glass samples was synchronously pulse-biased via -50 kV high voltage pulse modulator. The frequency and pulse width of 100 Hz and 15 usec, respectively, were used during metal ion implantation. In addition, nitrogen ions were implanted to study the strengthening effect of gas ion implantation. The mechanical and optical properties of implanted glass samples were investigated using micro-hardness tester and UV-Vis spectrometer. The implanted ion distribution and the chemical states along depth was studied with XPS (X-ray photo-electron spectroscopy). A cross-sectional TEM study was also conducted to investigate the nature of implanted metal ions. The ion-implanted glass samples showed increased hardness of ~1.5 times at short implantation times. However, with increasing the implantation time, the surface hardness was decreased due to the accumulation of implantation damage.

  • PDF

RECENT DEVELOPMENTS OF MEMBRANE TECHNOLOGY IN JAPAN

  • Kimura, Shoji
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.04a
    • /
    • pp.10-12
    • /
    • 1991
  • The first membrane technology applied in the Japanese industry was a. electro-dialysis(ED) process using ion-exchange meabranes. These membranes were first developed in early 50ties and the Japanese government decided to use this method for concentration of sea water to produce salt, which was then produced by solar evaporation. This development program started from 1960 by the Japan monopoly Coop. (at that time). To apply ED process for sea-water concentrat ion it was necessary to develop ion-exchange membranes having very low electric resistance to avoid energy loss due to Joule heat, and those having selectivity to permeate single valent ions only to avoid scale formation in the ED stacks. These Japanese companies, Asahi Glass, Asahi Chemical and Tokuyama Soda, have succeeded to develop such membranes, and until 1971 all of the seven salt manufacturing companies had adopted ED for production of food salt.

  • PDF