• 제목/요약/키워드: Ion-exchange columns

검색결과 29건 처리시간 0.025초

Preparation for Protein Separation of an Ion-Exchange Polymeric Stationary Phase Presenting Amino Acid and Amine Units Through Surface Graft Polymerization

  • Choi Seong-Ho;Lee Kwang-Pill;Shin Chang-Ho
    • Macromolecular Research
    • /
    • 제13권1호
    • /
    • pp.39-44
    • /
    • 2005
  • Ion-exchange polymeric stationary phases presenting amino acid and amino groups were prepared by the surface grafting of glycidyl methacrylate onto a silica gel surface and subsequent amination. Three kinds of amino acids-L-arginine (Arg), D-lysine (Lys), and D-histine (His)-were used in this study. An ion-exchange polymeric stationary phase presenting ethylene diamine (EDA) was also prepared by surface graft polymerization. Separation of the model proteins bovine serum albumin (BSA), chick egg albumin (CEA), and hemoglobin (Hb) was performed using the amino acid- and amine-derived columns. In separating the CEA/BSA mixture, the resolution time of BSA was longer than that of CEA when using the EDA column, whereas the resolution time of BSA was shorter than that of CEA when using the Arg, Lys, and His columns. In the separation of the Hb/BSA mixture, the resolution time of BSA was longer than that of Hb in the EDA column, whereas the resolution time of BSA was shorter than that of Hb in the amino acid columns (D-Lys, L-Arg, and D-His).

Partisil/Partisphere 이온 교환 컬럼 재생 가이드 (Column regeneration for Partisil/Partisphere ion-exchange columns)

  • Mark Fever;Gemma Howse
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.5.1-5.3
    • /
    • 2024
  • The document discusses the regeneration of Partisil/Partisphere ion-exchange columns in chromatography. It mentions that column efficiency can diminish with use due to the accumulation of sample and/or mobile phase impurities at the head of the column. This can lead to a change in back pressure, lower column efficiency, and sometimes a change in selectivity. The document outlines a procedure that may restore column performance. The document also provides everyday practices to enhance the lifetime of a column. These include using only high-purity HPLC solvents and buffers, using freshly prepared mobile phases and buffers, filtering mobile phases to remove particulates, using appropriate sample clean-up procedures, using a guard column or pre-column filter, and working within the pressure and flow rate limitations of the column. For the regeneration of Partisil/Partisphere SAX, SCX, WAX, and WCX columns, the document suggests passing 20 column volumes of various mobile phases through the column. These include a buffer wash, distilled water, an acid wash, a chelating wash, a methanol wash, and a buffer for separation. The document emphasizes that not all of these wash steps are required for every column clean-up and that some chromatographers require only a combination of certain steps.

  • PDF

Synthesis and Chromatographic Characteristics of Multidentate Ligand-Boned Silica Stationary Phases

  • Li, Rong;Wang, Yan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2201-2206
    • /
    • 2010
  • To improve the separation property and stability of metal chelate Cu(II) column, three new kinds of multidentate aminocarboxy silica columns with cation-exchange properties were synthesized using glutamic acid (Glu), glutamic acidbromoacetic acid (Glu-BAA), glutamic acid-bromosuccinic acid (Glu-BSUA) as ligands and silica gel as matrix. The standard proteins were separated with prepared chromatographic columns. The stationary phases exhibited the metal chelate property after fixing copper ion (II) on the synthesized multidentate ligand silica columns. The binding capacity of immobilized metal ion was related with the dentate number of multidentate ligands. Chromatographic behavior of proteins and the leakage of immobilized metal ion on multidentate chelate Cu(II) columns were affected by the dentate number of multidentate ligands and competitive elution system directly. The results showed that quinquedentate Glu-BSUA-Cu(II) column exhibited better chromatographic property and stability as compared with tridentate Glu-Cu(II) column, tetradentate Glu-BAA-Cu(II) column and commonly used IDA-Cu(II) column.

An Approach for Reducing Carbon-14 Stack Emissions via Optimal Use of Ion Exchang Resins at CANDU Plant

  • Sohn, Wook;Chi, Jun-Ha;Kang, Duk-Won
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.445-455
    • /
    • 2003
  • Relatively high carbon-14 emissions, which occurred at PHWR Plant during 1998 and 1999, made the site staff to implement several operational improvements: 1) the frequency and volume of the moderator cover gas purging were reduced through increased $O_2$ additions to the cover gas, 2) the 'old' resin columns were not used during re-start of the reactor from outage, 3) efforts were made to minimize air ingress, 4) the maximum service time of moderator ion-exchange columns were restricted to about 80 days. Through the improvements, the carbon-14 emission from each PHWR reactor returned to the normal levels during the remainder of 1999 and during 2000. We carried out a special surveillance at W-1 and W-3 from September 2001 to August 2002 to properly evaluate ways to optimize the use of moderator ion exchange resins from a C-14 perspective. The surveillance showed that only data that provided an operational marker for deciding when to remove the IX-resin column is an observed increase in the C-14 stack emissions themselves. Also, it is shown that any increase over the rate of 0.4 Ci $month^{-1}$ for two consecutive weeks may be the indication for an ion-exchange resin column change, especially if the IX-resin column has been in service for more than 80 days.

  • PDF

실리카 기반 컬럼의 세척, 재생 및 보관 가이드 (Column cleaning, regeneration and storage of silica-based columns)

  • Matt James;Mark Fever
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.1.1-1.4
    • /
    • 2024
  • This article provides comprehensive guidance on the maintenance, cleaning, regeneration, and storage of silica-based HPLC (High-Performance Liquid Chromatography) columns. The general considerations emphasize the importance of using in-line filters and guard cartridges to protect columns from blockage and irreversible sample adsorption. While these measures help, contamination by strongly adsorbed sample components can still occur over time, leading to an increase in back pressure, loss of efficiency, and other issues. To maximize column lifetime, especially with UHPLC (Ultra-High Performance Liquid Chromatography) columns, it is advisable to use ultra-pure solvents, freshly prepared aqueous mobile phases, and to filter all samples, standards, and mobile phases. Additionally, an in-line filter system and sample clean-up on dirty samples are recommended. However, in cases of irreversible compound adsorption or column voiding, regeneration may not be possible. The document also provides specific recommendations for column cleaning procedures, including the flushing procedures for various types of columns such as reversed phase, unbonded silica, bonded normal phase, anion exchange, cation exchange, and size exclusion columns for proteins. The flushing procedures involve using specific solvents in a series to clean and regenerate the columns. It is emphasized that the flow rate during flushing should not exceed the specified limit for the particular column, and the last solvent used should be compatible with the mobile phase. Furthermore, the article outlines the storage conditions for silica based HPLC columns, highlighting the impact of storage conditions on the column's lifetime. It is recommended to flush all buffers, salts, and ion-pairing reagents from the column before storage. The storage solvent should ideally match the one used in the initial column test chromatogram provided by the manufacturer, and column end plugs should be fitted to prevent solvent evaporation and drying out of the packing bed.

  • PDF

다양한 HPLC Column에서의 IgY(Immunoglobulin Yolk) 분리특성 (Separation Characteristics of IgY (Immunoglobulin Yolk) in Various HPLC Columns)

  • 송성문;김인호
    • Korean Chemical Engineering Research
    • /
    • 제50권4호
    • /
    • pp.659-665
    • /
    • 2012
  • 동물 혈청 중의 IgG (Immunoglobulin G)에 해당되는 난황에 포함된 면역 단백질 IgY (Immunoglobulin Yolk)는 식품 단백질로 장내 면역 물질로 중요하다. IgY를 정제하기 위해 신선란의 노른자에 카리지난이나 아라빅검을 전처리 물질로 사용하였다. 전처리 후 FPLC (Fast Protein Liquid chromatography)의 DEAE (Diethylaminoethyl) Sepharose 칼럼에서 이온교환법에 의해 불순물을 제거하여 IgY를 얻고, GF HPLC (Gel Filtration High Performance Liquid Chromatography)로 IgY의 분자량을 측정하고 표준 IgY와 비교하여 IgY 단백질을 동정하였다. GF HPLC에서 IgY의 다양성을 발견하였고 IgY 단백질 군의 다양성을 IE HPLC (Ion Exchange High Performance Liquid Chromatography)에서 AX, CX, SCX 칼럼을 사용하여 pH, NaCl 농도를 바꾸어 조사하였다. AX를 사용하여 0.5M NaCl, pH=8 조건에서 3개의 IgY 피크를 분리하였고, SCX를 이용했을 때 0.5M NaCl, pH=5 조건에서도 3개의 IgY 피크를 분리할 수 있었다.

양이온 교환 크로마토그래피와 HPLC에서의 L-arabinose와 D-ribose의 분리 및 등온 흡착곡선 결정 (Determination of Adsorption Isotherms and Separation of L-arabinose and D-ribose in Cation Exchange Chromatography and HPLC)

  • 전영주;김인호
    • KSBB Journal
    • /
    • 제23권1호
    • /
    • pp.31-36
    • /
    • 2008
  • The use of L-carbohydrates and their corresponding nucleosides in medicinal application has greatly increased. For example L-ribose has been much in demand as the starting material for curing hepatitis B. High performance liquid chromatography (HPLC) method was studied for the analysis of ribose and arabinose fractions from ion exchange chromatography (IEC). Dowex Monosphere 99 Ca/320 resin was packed in IEC to separate ribose and arabinose under various operating conditions. $NH_{2}$ and sugar HPLC columns were then used to analyze the fractions from the IEC column. Pulse input method (PIM) was also used to measure adsorption isotherms of ribose and arabinose in the Dowex column and HPLC columns. Experimental results and simulations by ASPEN chromatography were compared with fair agreement.

이온교환크로마토그라피를 이용하여 굴 박신액에서 Taurine의 분리 (The Isolation of Taurine from the Oyster Shucking Juice Using Ion Exchange Column Chromatography)

  • 이영철;구재근;김동수;김영명
    • 한국식품과학회지
    • /
    • 제24권6호
    • /
    • pp.616-618
    • /
    • 1992
  • 본 연구에서는 효과적으로 이용하지 못하는 굴박신액에서 이온교환 크로마토그라피로 taurine의 분리하고자 하였다. Dowex 50W $H^+$형과 Dowex 2 OH 형으로 처리한 용출액 중 흡광도가 높게 나타난 획분을 Amberite IRA-410 $OH^-$형에 다시 용출시켜 taurine을 흡착시킨 후 흡착한 taurine을 0.1M acetic acid로 용출시키면 수율과 순도가 84.8%와 94.9%인 taurine을 얻을 수 있었다.

  • PDF

잠뇨로부터 질소함유 당물질 분리 및 glycosidase에 대한 저해활성 (Isolation of N-Containing Sugars from Silkworm Urine and Their Glycosidase Inhibitory Activities)

  • 송주경;정성현
    • Biomolecules & Therapeutics
    • /
    • 제6권4호
    • /
    • pp.364-370
    • /
    • 1998
  • Glycosidase inhibitors from urine of Bombyx mori were isolated and their inhibitory activities on glycosidases were evaluated. Six compounds were isolated by using several ion exchange columns, and their chemical structures were identified by the physicochemical and spectral data. Compound IV, V and Ⅵ were identified as 1-deoxynojirimycin, fagomine and 1,4-dideoxy-1,4-imino-D-arabinitol, respectively. Among six compounds isolated,1-deoxynojirimycin(IV) was the most potent inhibitor on $\alpha$-glucosidase and $\beta$-galactosidase of rat intestine, and its inhibitory activities for trehalase and almond $\beta$-glucosidase were relatively weak. Compound V and Ⅵl retained a little inhibitory potency toward $\alpha$-glucosidase and $\beta$-galactosidase. Compound II and III, however, have been found to have no effect on all glycosidases tested in this study.

  • PDF

Decolorization of Aqueous Caprolactam Solution by Anion-exchange Resins

  • Yuan Zhen;Yu Ping;Luo Yunbai
    • Fibers and Polymers
    • /
    • 제7권2호
    • /
    • pp.112-116
    • /
    • 2006
  • Caprolactam is the most important raw material for making Nylon 6 fibers and its quality directly determines the quality of Nylon. So it is necessary to study the techniques and methods to remove the colorful impurities from caprolactam. In this paper, the decolorization of caprolactam aqueous solution by anion exchange resins was studied and the decoloring abilities of five commercial resins were investigated. The regeneration of the resins was also studied, too. This study shows that the resin AMTX202 have excellent decoloring ability in the column experiment and that the decoloring efficiency is correlated with the volume of resins packed and is slightly affected by the flow rate and regenerating times. The fact that the resins can be regenerated and reused without affecting the efficiency of decolorization will decrease the cost of the treatment and operation in the industry. The adsorption of colored compounds with anion exchange resins in the packed columns seems to be technically feasible.