• 제목/요약/키워드: Ion Separation and Collection

검색결과 6건 처리시간 0.02초

유전체구 충진형 전극계의 코로나방전과 강전해수 발생특성 (Corona Discharge and Strong Electrolyzed Water Generation Characteristics of the Electrode System Bedded by Dielectric Pellets)

  • 김진규
    • 조명전기설비학회논문지
    • /
    • 제16권4호
    • /
    • pp.46-54
    • /
    • 2002
  • 본 논문은 전해수 발생장치내에 이온분리집속 격막을 설치하여 비유전율이 틀리는 유전체구를 충진한 구조로 함으로써 고효율의 강전해수 발생장치를 제안하였다. 염화나트륨이 용해된 수도수와 일반수도수를 원료수로서 본 강전해수 발생장치에 인입하였을 때 충진된 유전체구의 비유전율 변화가 수중 이온분리집속성능에 미치는 영향을 연구 검토하였다. 실험결과로서 본 강전해수 발생장치에 원료수로서 수도수의 유속을 0.5[LPM]으로 인입시키고 구형파 펄스전류를 1.0[A]로 인가하였을 때 pH 3.1과 10.6의 전해수를 얻을 수 있었다. 그리고 염화나트륨이 0.1[wt%]용해된 수도수의 경우 pH 2.8과 11.7의 전해수를 얻었다. 또한 비유전율이 가장 높은 BaTiO$_3$과 같은 유전체구를 전해수 발생장치에 충진한 경우 각각 PH 2.7, 11.7과 pH 2.4, 12.0의 전해수를 얻을 수 있었다.

Distortion of Eelectrical Double Layer in Liquid Filtration by Fibrous Filters

  • Lee, Myong-Hwa;Hirose, Shogo;Otani, Yoshio
    • 한국입자에어로졸학회지
    • /
    • 제10권3호
    • /
    • pp.99-108
    • /
    • 2014
  • Liquid filtration by membrane filters is essential for the preparation of ultrapure water in semiconductor manufacturing processes. The separation of submicrometer particles suspended in ultrapure water with a laminated fibrous membrane filter was studied numerically and experimentally in the present work. We found that an electrical double layer around a single fiber expanded to a large extent at a low ion concentration, as in ultrapure water, and deformed toward the upstream of the fiber with increasing filtration velocity. Since an increase in the electrical double-layer thickness leads to a decrease in the electrical potential gradient, particles with the same polarity as the fiber approach the fiber more easily and are captured at a high filtration velocity. Experimental results also confirmed that the collection efficiency of polystyrene latex(PSL) particles through a PTFE filter became higher as the filtration velocity increased.

Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

  • Lee, Bo-Kyoung;Lee, Chong-Keun;Lee, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2039-2044
    • /
    • 2011
  • A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with $r^2$ = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, $r^2$ = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.

The Effect of Three-Dimensional Morphology with Wet Chemical Etching in Solar Cells

  • Kim, Hyunyub;Park, Jangho;Kim, Hyunki;Kim, Joondong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.667-667
    • /
    • 2013
  • Optimizing morphology of the front surface with three dimensional structures (3D) in solar cell is essential element for not only effectivelight harvesting but also carrier collection and separation without the cost burden in process. We designed a three-dimensionally ordered front surface with wet chemical etching. Wet chemical etching is a proper way to have three dimensional structures. The method efficiently transmits the incident light at the front surface to a Si absorber and has competitive price in manufacturing when comparing with reactive ion etching (RIE) to have three dimensional structures. This indicates that optimized front surface with three dimensional structures by wet chemical etching will bring effective light management in solar cells.

  • PDF

Depth-dependent EBIC microscopy of radial-junction Si micropillar arrays

  • Kaden M. Powell;Heayoung P. Yoon
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.17.1-17.9
    • /
    • 2020
  • Recent advances in fabrication have enabled radial-junction architectures for cost-effective and high-performance optoelectronic devices. Unlike a planar PN junction, a radial-junction geometry maximizes the optical interaction in the three-dimensional (3D) structures, while effectively extracting the generated carriers via the conformal PN junction. In this paper, we report characterizations of radial PN junctions that consist of p-type Si micropillars created by deep reactive-ion etching (DRIE) and an n-type layer formed by phosphorus gas diffusion. We use electron-beam induced current (EBIC) microscopy to access the 3D junction profile from the sidewall of the pillars. Our EBIC images reveal uniform PN junctions conformally constructed on the 3D pillar array. Based on Monte-Carlo simulations and EBIC modeling, we estimate local carrier separation/collection efficiency that reflects the quality of the PN junction. We find the EBIC efficiency of the pillar array increases with the incident electron beam energy, consistent with the EBIC behaviors observed in a high-quality planar PN junction. The magnitude of the EBIC efficiency of our pillar array is about 70% at 10 kV, slightly lower than that of the planar device (≈ 81%). We suggest that this reduction could be attributed to the unpassivated pillar surface and the unintended recombination centers in the pillar cores introduced during the DRIE processes. Our results support that the depth-dependent EBIC approach is ideally suitable for evaluating PN junctions formed on micro/nanostructured semiconductors with various geometry.

치과기공소 주조체 산세척과정에서 발생하는 폐수내 중금속 농도 (A Study on Heavy Metal Concentrations in Waste Water Produced in the Casting Pickling Process at Dental Technical Laboratories)

  • 정다이;사공준
    • 한국환경보건학회지
    • /
    • 제44권1호
    • /
    • pp.55-62
    • /
    • 2018
  • Objectives: This study set out to measure the heavy metal concentrations in waste water produced in the casting pickling process at dental technical laboratories and examine the actual state of its treatment. Methods:The investigator measured the concentrations of each heavy metal at 55 dental technical laboratories using an inductively coupled plasma optical emission system. Results: The annual usage of electrolytes was under 10 L in 50 (90.9%), and was 10L or more in five (9.1%) laboratories. Among the laboratories, 15 (27.3%) commissioned the treatment of waste,12 (21.8%) treated the waste with general sewage,and 28 (50.9%) treated the waste in aseptic tank. The arithmetic $mean{\pm}standard$ deviation and the geometric mean of chrome(Cr) were $75.3{\pm}50.9$ and 58.3 mg/L; those of cobalt (Co) were $112.3{\pm}106.7$ and 66.1 mg/L; those of nickel (Ni) were $62.9{\pm}83.5$ and 8.9 mg/L; those of molybdenum (Mo) were $17.1{\pm}13.4$ and 12.0 mg/L; those of iron (Fe) were $31.5{\pm}44.1$ and 6.2 mg/L; those of lead (Pb) were $0.3{\pm}0.3$ and 0.3 mg/L; those of beryllium (Be) were $3.6{\pm}3.6$ and 2.0 mg/L. The hydrogen ion concentration was under pH 2 across all the samples. Conclusions: The findings show that the dental technical laboratories were not doing well with the separation, storage, collection, and treatment of the electrolytes they discarded, and that most of the electrolytes were introduced through the general sewage or aseptic tank. The causes of this include alack of perception among the practitioners at dental technical laboratories and contracted companies avoiding collection for economic reasons. There is a need for education to improve the perceptions of waste water treatment among the practitioners at dental technical laboratories. Environment-related departments should be stricter with legal applications in the central and local governments. It is also required to provide proper management of commissioned treatment.