• Title/Summary/Keyword: IoT-Cloud service

Search Result 131, Processing Time 0.026 seconds

Toward Energy-Efficient Task Offloading Schemes in Fog Computing: A Survey

  • Alasmari, Moteb K.;Alwakeel, Sami S.;Alohali, Yousef
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2022
  • The interconnection of an enormous number of devices into the Internet at a massive scale is a consequence of the Internet of Things (IoT). As a result, tasks offloading from these IoT devices to remote cloud data centers become expensive and inefficient as their number and amount of its emitted data increase exponentially. It is also a challenge to optimize IoT device energy consumption while meeting its application time deadline and data delivery constraints. Consequently, Fog Computing was proposed to support efficient IoT tasks processing as it has a feature of lower service delay, being adjacent to IoT nodes. However, cloud task offloading is still performed frequently as Fog computing has less resources compared to remote cloud. Thus, optimized schemes are required to correctly characterize and distribute IoT devices tasks offloading in a hybrid IoT, Fog, and cloud paradigm. In this paper, we present a detailed survey and classification of of recently published research articles that address the energy efficiency of task offloading schemes in IoT-Fog-Cloud paradigm. Moreover, we also developed a taxonomy for the classification of these schemes and provided a comparative study of different schemes: by identifying achieved advantage and disadvantage of each scheme, as well its related drawbacks and limitations. Moreover, we also state open research issues in the development of energy efficient, scalable, optimized task offloading schemes for Fog computing.

CloudIoT-based Jukebox Platform: A Music Player for Mobile Users in Café

  • Byungseok Kang;Joohyun Lee;Ovidiu Bagdasar;Hyunseung Choo
    • Journal of Internet Technology
    • /
    • v.21 no.5
    • /
    • pp.1363-1374
    • /
    • 2020
  • Contents services have been provided to people in a variety of ways. Jukebox service is one of the contents streaming which provides an automated music-playing service. User inserts coin and presses a play button, the jukebox automatically selects and plays the record. The Disk Jockey (DJ) in Korean cafeteria (café) received contents desired of customer and played them through the speakers in the store. In this paper, we propose a service platform that reinvented the Korean café DJ in an integrated environment of IoT and cloud computing. The user in a store can request contents (music, video, and message) through the service platform. The contents are provided through the public screen and speaker in the store where the user is located. This allows people in the same location store to enjoy the contents together. The user information and the usage history are collected and managed in the cloud. Therefore, users can receive customized services regardless of stores. We compare our platform to exist services. As a result of the performance evaluation, the proposed platform shows that contents can be efficiently provided to users and adapts IoT-Cloud integrated environments.

Flexible Crypto System for IoT and Cloud Service (IoT와 클라우드 서비스를 위한 유연한 암호화 시스템)

  • Kim, SeokWoo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • As various IoT devices appear recently, Cloud Services such as DropBox, Amazon S3, Microsoft Azure Storage, etc are widely use for data sharing across the devices. Although, cryptographic algorithms like AES is prevalently used for data security, there is no mechanisms to allow selectively and flexibly use wider spectrum of lightweight cryptographic algorithms such as LEA, SEED, ARIA. With this, IoT devices with lower computation power and limited battery life will suffer from overly expensive workload and cryptographic operations are slower than what is enough. In this paper, we designed and implemented a CloudGate that allows client programs of those cloud services to flexibly select a cryptographic algorithms depending on the required security level. By selectively using LEA lightweight algorithms, we could achieve the cryptographic operations could be maximum 1.8 faster and more efficient than using AES.

Towards Open Interfaces of Smart IoT Cloud Services

  • Kim, Kyoung-Sook;Ogawa, Hirotaka
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.235-238
    • /
    • 2016
  • With the vision of Internet of Things (IoT), physical world itself is becoming a connected information system on the Internet and cyber world is computing as a physical act to sense and respond to real-world events collaboratively. The systems that tightly interlink the cyber and physical worlds are often referred to as Smart Systems or Cyber-Physical Systems. Smart IoT Clouds aim to provide a cyber-physical infrastructure for utility (pay-as-you-go) computing to easily and rapidly build, modify and provision auto-scale smart systems that continuously monitor and collect data about real-world events and automatically control their environment. Developing specifications for service interoperability is critical to enable to achieve this vision. In this paper, we bring an issue to extend Open Cloud Computing Interface for uniform, interoperable interfaces for Smart IoT Cloud Services to access services and build a smart system through orchestrating the cloud services.

  • PDF

Cybersecurity Audit of 5G Communication-based IoT, AI, and Cloud Applied Information Systems (5G 통신기반 IoT, AI, Cloud 적용 정보시스템의 사이버 보안 감리 연구)

  • Im, Hyeong-Do;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.428-434
    • /
    • 2020
  • Recently, due to the development of ICT technology, changes to the convergence service platform of information systems are accelerating. Convergence services expanded to cyber systems with 5G communication, IoT, AI, and cloud are being reflected in the real world. However, the field of cybersecurity audit for responding to cyber attacks and security threats and strengthening security technology is insufficient. In this paper, we analyze the international standard analysis of information security management system, security audit analysis and security of related systems according to the expansion of 5G communication, IoT, AI, Cloud based information system security. In addition, we design and study cybersecurity audit checklists and contents for expanding security according to cyber attack and security threat of information system. This study will be used as the basic data for audit methods and audit contents for coping with cyber attacks and security threats by expanding convergence services of 5G, IoT, AI, and Cloud based systems.

Analysis of Cloud Service Providers

  • Lee, Yo-Seob
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.315-320
    • /
    • 2021
  • Currently, cloud computing is being used as a technology that greatly changes the IT field. For many businesses, many cloud services are available in the form of custom, reliable, and cost-effective web applications. Most cloud service providers provide functions such as IoT, machine learning, AI services, blockchain, AR & VR, mobile services, and containers in addition to basic cloud services that support the scalability of processors, memory, and storage. In this paper, we will look at the most used cloud service providers and compare the services provided by the cloud service providers.

A Comparison and Analysis of the Openstack-based Scheduler for a IoT Service (최적의 IoT 서비스 제공을 위한 오픈스택 기반 스케줄러 비교 및 분석)

  • Moon, YoungJu;Kang, JiHun;Yu, TaeMook;Yu, HeonChang;Chung, KwangSik;Gil, JoonMin
    • Annual Conference of KIPS
    • /
    • 2015.10a
    • /
    • pp.227-229
    • /
    • 2015
  • 모든 사물에 인터넷이 연결되는 사물 인터넷(IoT: Internet of Things)시대가 열렸다. IoT 디바이스들을 연결하기 위해 클라우드 또한 더욱 관심이 높아지고 있다. IoT 디바이스를 연결한 클라우드는 작은 단위의 작업들을 다량으로 수행하게 된다. IoT 서비스에서 발생하는 작업들을 효율적으로 처리하기 위해서는 적합한 작업 스케줄링이 반드시 필요하다. 본 논문에서는 오픈소스 기반의 플랫폼인 오픈스택(OpenStack)에서 Filter 스케줄러와 Chance 스케줄러를 VM 개수에 따라 단위 시간동안 성능을 비교 분석한다. 이를 통해 오픈스택에서 IoT 서비스 사용자들을 위해 합리적인 스케줄러 방법을 도출해낼 수 있다

Dynamic Service Composition and Development Using Heterogeneous IoT Systems

  • Ryu, Minwoo;Yun, Jaeseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.9
    • /
    • pp.91-97
    • /
    • 2017
  • IoT (Internet of Things) systems are based on heterogeneous hardware systems of different types of devices interconnected each other, ranging from miniaturized and low-power wireless sensor node to cloud servers. These IoT systems composed of heterogeneous hardware utilize data sets collected from a particular set of sensors or control designated actuators when needed using open APIs created through abstraction of devices' resources associated to service applications. However, previously existing IoT services have been usually developed based on vertical platforms, whose sharing and exchange of data is limited within each industry domain, for example, healthcare. Such problem is called 'data silo', and considered one of crucial issues to be solved for the success of establishing IoT ecosystems. Also, IoT services may need to dynamically organize their services according to the change of status of connected devices due to their mobility and dynamic network connectivity. We propose a way of dynamically composing IoT services under the concept of WoT (Web of Things) where heterogeneous devices across different industries are fully integrated into the Web. Our approach allows developers to create IoT services or mash them up in an efficient way using Web objects registered into multiple standardized horizontal IoT platforms where their resources are discoverable and accessible. A Web-based service composition tool is developed to evaluate the practical feasibility of our approach under real-world service development.

Role Based Smart Health Service Access Control in F2C environment (F2C 환경에서 역할 기반 스마트 헬스 서비스 접근 제어)

  • Mi Sun Kim;Kyung Woo Park;Jae Hyun Seo
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.27-42
    • /
    • 2023
  • The development of cloud services and IoT technology has radically changed the cloud environment, and has evolved into a new concept called fog computing and F2C (fog-to-cloud). However, as heterogeneous cloud/fog layers are integrated, problems of access control and security management for end users and edge devices may occur. In this paper, an F2C-based IoT smart health monitoring system architecture was designed to operate a medical information service that can quickly respond to medical emergencies. In addition, a role-based service access control technology was proposed to enhance the security of user's personal health information and sensor information during service interoperability. Through simulation, it was shown that role-based access control is achieved by sharing role registration and user role token issuance information through blockchain. End users can receive services from the device with the fastest response time, and by performing service access control according to roles, direct access to data can be minimized and security for personal information can be enhanced.

Design and Evaluation of a Fault-tolerant Publish/Subscribe System for IoT Applications (IoT 응용을 위한 결함 포용 발행/구독 시스템의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1101-1113
    • /
    • 2021
  • The rapid growth of sense-and-respond applications and the emerging cloud computing model present a new challenge: providing publish/subscribe middleware as a scalable and elastic cloud service. The publish/subscribe interaction model is a promising solution for scalable data dissemination over wide-area networks. In addition, there have been some work on the publish/subscribe messaging paradigm that guarantees reliability and availability in the face of node and link failures. These publish/subscribe systems are commonly used in information-centric networks and edge-fog-cloud infrastructures for IoT. The IoT has an edge-fog cloud infrastructure to efficiently process massive amounts of sensing data collected from the surrounding environment. In this paper. we propose a quorum-based hierarchical fault-tolerant publish/subscribe systems (QHFPS) to enable reliable delivery of messages in the presence of link and node failures. The QHFPS efficiently distributes IoT messages to the publish/subscribe brokers in fog overlay layers on the basis of proposing extended stepped grid (xS-grid) quorum for providing tolerance when faced with node failures and network partitions. We evaluate the performance of QHFPS in three aspects: number of transmitted Pub/Sub messages, average subscription delay, and subscritpion delivery rate with an analytical model.