• Title/Summary/Keyword: IoT with Object Detection

Search Result 17, Processing Time 0.023 seconds

The Design and Experiment of AI Device Communication System Equipped with 5G (5G를 탑재한 AI 디바이스 통신 시스템의 설계 및 실험)

  • Han Seongil;Lee Daesik;Han Jihwan;Moon Hhyunjin;Lim Changmin;Lee Sangku
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • In this paper, IO+5G dedicated hardware is developed and an AI device communication system equipped with a 5G is designed and tested. The AI device communication system equipped with a 5G receives the collected real-time images and the information collected from the IoT sensor in real time is to analyze the information and generates the risk detection events in the AI processing board. The event generated in the AI processing board creates a 5G channel in the dedicated hardware equipped with IO+5G. The created 5G channel delivers event video to the control video server. The 5G based dongle network enables faster data collection and more precise data measurement compared to wireless LAN and 5G routers. As a result of the experiment in this paper, the average test result of the 5G dongle network is about 51% faster than the Wi-Fi average test result in downlink and about 40% faster in uplink. In addition, when comparing the test result with terms of the 5G rounter to be set to 80% upload and 20% download, the average test result is that the 5G dongle network is about 11.27% faster when downloading and about 17.93% faster when uploading. when comparing the test result with terms of the the router to be set to 60% upload and 40% download, the 5G dongle network is about 11.19% faster when downlinking and about 13.61% faster when uplinking. Therefore, in this paper it describes that the developed 5G dongle network can improve the results by collecting data and analyzing it faster than wireless LAN and 5G routers.

A Real-time People Counting Algorithm Using Background Modeling and CNN (배경모델링과 CNN을 이용한 실시간 피플 카운팅 알고리즘)

  • Yang, HunJun;Jang, Hyeok;Jeong, JaeHyup;Lee, Bowon;Jeong, DongSeok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.70-77
    • /
    • 2017
  • Recently, Internet of Things (IoT) and deep learning techniques have affected video surveillance systems in various ways. The surveillance features that perform detection, tracking, and classification of specific objects in Closed Circuit Television (CCTV) video are becoming more intelligent. This paper presents real-time algorithm that can run in a PC environment using only a low power CPU. Traditional tracking algorithms combine background modeling using the Gaussian Mixture Model (GMM), Hungarian algorithm, and a Kalman filter; they have relatively low complexity but high detection errors. To supplement this, deep learning technology was used, which can be trained from a large amounts of data. In particular, an SRGB(Sequential RGB)-3 Layer CNN was used on tracked objects to emphasize the features of moving people. Performance evaluation comparing the proposed algorithm with existing ones using HOG and SVM showed move-in and move-out error rate reductions by 7.6 % and 9.0 %, respectively.

Design and Implementation of Optimal Smart Home Control System (최적의 스마트 홈 제어 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.

Modified Center Weight Filter Algorithm using Pixel Segmentation of Local Area in AWGN Environments (AWGN 환경에서 국부영역의 화소분할을 사용한 변형된 중심 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.250-252
    • /
    • 2022
  • Recently, with the development of IoT technology and AI, unmanned and automated systems are progressing in various fields, and various application technologies are being studied in systems using algorithms such as object detection, recognition, and tracking. In the case of a system operating based on an image, noise removal is performed as a pre-processing process, and precise noise removal is sometimes required depending on the environment of the system. In this paper, we propose a modified central weight filter algorithm using pixel division of local regions to minimize the blurring that tends to occur in the filtering process and to emphasize the details of the resulting image. In the proposed algorithm, when a pixel of a local area is divided into two areas, the center of the dominant area among the divided areas is set as a criterion for the weight filter algorithm. The resulting image is calculated by convolving the transformed center weight with the pixel value inside the filtering mask.

  • PDF

Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms (다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집)

  • Lim, Hyuna;Oh, Seojeong;Son, Hyeongjun;Oh, Yosep
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Recently, digital transformation in manufacturing has been accelerating. It results in that the data collection technologies from the shop-floor is becoming important. These approaches focus primarily on obtaining specific manufacturing data using various sensors and communication technologies. In order to expand the channel of field data collection, this study proposes a method to automatically collect manufacturing data based on vision-based artificial intelligence. This is to analyze real-time image information with the object detection and tracking technologies and to obtain manufacturing data. The research team collects object motion information for each frame by applying YOLO (You Only Look Once) and DeepSORT as object detection and tracking algorithms. Thereafter, the motion information is converted into two pieces of manufacturing data (production performance and time) through post-processing. A dynamically moving factory model is created to obtain training data for deep learning. In addition, operating scenarios are proposed to reproduce the shop-floor situation in the real world. The operating scenario assumes a flow-shop consisting of six facilities. As a result of collecting manufacturing data according to the operating scenarios, the accuracy was 96.3%.

Machine learning application for predicting the strawberry harvesting time

  • Yang, Mi-Hye;Nam, Won-Ho;Kim, Taegon;Lee, Kwanho;Kim, Younghwa
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.2
    • /
    • pp.381-393
    • /
    • 2019
  • A smart farm is a system that combines information and communication technology (ICT), internet of things (IoT), and agricultural technology that enable a farm to operate with minimal labor and to automatically control of a greenhouse environment. Machine learning based on recently data-driven techniques has emerged with big data technologies and high-performance computing to create opportunities to quantify data intensive processes in agricultural operational environments. This paper presents research on the application of machine learning technology to diagnose the growth status of crops and predicting the harvest time of strawberries in a greenhouse according to image processing techniques. To classify the growth stages of the strawberries, we used object inference and detection with machine learning model based on deep learning neural networks and TensorFlow. The classification accuracy was compared based on the training data volume and training epoch. As a result, it was able to classify with an accuracy of over 90% with 200 training images and 8,000 training steps. The detection and classification of the strawberry maturities could be identified with an accuracy of over 90% at the mature and over mature stages of the strawberries. Concurrently, the experimental results are promising, and they show that this approach can be applied to develop a machine learning model for predicting the strawberry harvesting time and can be used to provide key decision support information to both farmers and policy makers about optimal harvest times and harvest planning.

Image Processing System based on Deep Learning for Safety of Heat Treatment Equipment (열처리 장비의 Safety를 위한 딥러닝 기반 영상처리 시스템)

  • Lee, Jeong-Hoon;Lee, Ro-Woon;Hong, Seung-Taek;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.77-83
    • /
    • 2020
  • The heat treatment facility is in a situation where the scope of application of the remote IOT system is expanding due to the harsh environment caused by high heat and long working hours among the root industries. In this heat treatment process environment, the IOT middleware is required to play a pivotal role in interpreting, managing and controlling data information of IoT devices (sensors, etc.). Until now, the system controlled by the heat treatment remotely was operated with the command of the operator's batch system without overall monitoring of the site situation. However, for the safety and precise control of the heat treatment facility, it is necessary to control various sensors and recognize the surrounding work environment. As a solution to this, the heat treatment safety support system presented in this paper proposes a support system that can detect the access of the work manpower to the heat treatment furnace through thermal image detection and operate safely when ordering work from a remote location. In addition, an OPEN CV-based deterioration analysis system using DNN deep learning network was constructed for faster and more accurate recognition than general fixed hot spot monitoring-based thermal image analysis. Through this, we would like to propose a system that can be used universally in the heat treatment environment and support the safety management specialized in the heat treatment industry.