• Title/Summary/Keyword: IoT Robot

Search Result 67, Processing Time 0.019 seconds

An Implementation of the path-finding algorithm for TurtleBot 2 based on low-cost embedded hardware

  • Ingabire, Onesphore;Kim, Minyoung;Lee, Jaeung;Jang, Jong-wook
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.313-320
    • /
    • 2019
  • Nowadays, as the availability of tiny, low-cost microcomputer increases at a high level, mobile robots are experiencing remarkable enhancements in hardware design, software performance, and connectivity advancements. In order to control Turtlebot 2, several algorithms have been developed using the Robot Operating System(ROS). However, ROS requires to be run on a high-cost computer which increases the hardware cost and the power consumption to the robot. Therefore, design an algorithm based on low-cost hardware is the most innovative way to reduce the unnecessary costs of the hardware, to increase the performance, and to decrease the power consumed by the computer on the robot. In this paper, we present a path-finding algorithm for TurtleBot 2 based on low-cost hardware. We implemented the algorithm using Raspberry pi, Windows 10 IoT core, and RPLIDAR A2. Firstly, we used Raspberry pi as the alternative to the computer employed to handle ROS and to control the robot. Raspberry pi has the advantages of reducing the hardware cost and the energy consumed by the computer on the robot. Secondly, using RPLIDAR A2 and Windows 10 IoT core which is running on Raspberry pi, we implemented the path-finding algorithm which allows TurtleBot 2 to navigate from the starting point to the destination using the map of the area. In addition, we used C# and Universal Windows Platform to implement the proposed algorithm.

A Relay System for Supporting the Execution of Context-Aware Robot Services on ROS (ROS를 이용하여 상황인지 기반의 로봇 서비스를 실행시키기 위한 중계 시스템)

  • Lee, Minho;Choi, Jongsun;Choi, Jaeyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.5
    • /
    • pp.211-218
    • /
    • 2017
  • Recent robot software platform research focuses on providing intelligent service via abstraction of robot devices. Context-aware techniques are necessary for intelligent robot services, which are based on the perception of environmental information obtained from heterogeneous sensors in IoT environment. Robot Operating System (ROS) provides protocols to operate robot devices. ROS includes functions for abstracting heterogeneous sensors themselves in order to control the robot, however, it lacks the ability to provide context information that the robot can perceive based on environmental information through consistent collection methods. In this paper, we propose a relay system for ROS to provide context-aware robot service. The proposed system makes it possible for ROS to control and provide context-aware robot services with relay of an external context-aware system and ROS. In experiments, we demonstrate procedures that robot services abstracted from ROS and an external context-aware system works together based on the proposed system.

Design of Voice Control Solution for Industrial Articulated Robot (산업용 다관절로봇 음성제어솔루션 설계)

  • Kwak, Kwang-Jin;Kim, Dae-Yeon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.55-60
    • /
    • 2021
  • As the smart factory progresses, the use of automation facilities and robots is increasing. Also, with the development of IT technology, the utilization of the system using voice recognition is also increasing. Voice recognition technology is a technology that stands out in smart home and various IoT technologies, but it is difficult to apply to factories due to the specificity of factories. Therefore, in this study, a method to control an industrial articulated robot was designed using voice recognition technology that considers the situation at the manufacturing site. It was confirmed that the robot could be controlled through network protocol and command conversion after receiving voice commands for robot operation through mobile.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.

Design of Multiple Floors Autonomous Navigation System Based On ROS Enabled Mobile Robots (ROS 기반 모바일 로봇을위한 다중 층 자율 주행 시스템 설계)

  • Ahmed, Hamdi A.;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.55-57
    • /
    • 2018
  • In Simultaneous Localization and Mapping (SLAM), the robot acquire its map of environment while simultaneously localize itself relative to the map. Now a day, a map acquired by the mobile robots limit to specific area, in an indoor environment and cannot able to navigate autonomous between different floors. We propose a design that could able to overcome this issue in order to navigate multiple floors with one end goal mission to a target destination in the course of autonomous navigation. In this research, we consider all the floors have identical structural arrangement. Internet of Things (IoT) playing crucial role in bridging between "things" and Robot Operating System (ROS) enabled mobile robots.

  • PDF

Smart Warehouse Management System Utilizing IoT-based Autonomous Mobile Robot for SME Manufacturing Factory (중소제조기업을 위한 IoT기반의 자율이동모듈을 활용한 스마트 창고관리 시스템 개발)

  • Kim, Jeong-A;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.237-244
    • /
    • 2018
  • The Smart Factory level of manufacturing factories of SMEs now lacks a system for grasping the accurate inventory amount associated with inventory movements in managing warehouses at the basic level. Also, it is difficult to manage accurate materials for loss of data due to worker manual work and production method due to experience. In order to solve this problem, in this paper, automatic acquisition of inventory to minimize manual work to grasp workers' Inventory and improve automation is done. In the smart warehouse management system using the IoT-based autonomous mobile module, the autonomous mobile module acquires the data of the inventory storage while moving through the line. In order to grasp the material of the Inventory storage, The Camera module recognizes the name of the inventory storage. And Then, If output matches, the data measured by the sensor is transferred to the server. This data can be processed, saved in a database, and real-time inventory quantity and location can be grasped in a web-based monitoring environment for administrators. The Real-time Automatic Inventory (RAIC) systems is reduce manual tasks and expect the effects of automated inventory management systems.

A Study on Object Recognition for Safe Operation of Hospital Logistics Robot Based on IoT (IoT 기반의 병원용 물류 로봇의 안전한 운행을 위한 장애물 인식에 관한 연구)

  • Kang, Min-soo;Ihm, Chunhwa;Lee, Jaeyeon;Choi, Eun-Hye;Lee, Sang Kwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.141-146
    • /
    • 2017
  • New infectious diseases such as MERS have been in need of many measures such as initial discovery, isolation, and crisis response. In addition, the culture of hospitals is changing, such as the general public 's visiting and Nursing Care Integration Services. However, as the qualifications and regulations of medical personnel in hospitals become rigid, overseas such as linens, wastes movements are replacing possible works with robots. we have developed a hospital logistics robot that can carry out various goods delivery within a hospital, and can move various kinds of objects safely to a desired location. In this thesis, we have studied a hospital logistics robot that can carry out various kinds of goods delivery within the hospital, and can move various kinds of objects such as waste, and linen safely to a desired location. The movement of a robot in a hospital may cause a collision between a person and an object, so that the collision must be prevented. In order to prevent collision, it is necessary to recognize whether or not an object exists in the movement path of the robot. And if there is an object, it should recognize whether it moves or not. In order to recognize human beings and objects, we recognize the person with face/body recognition technology and generate the context awareness of the object using 3D Vision image segmentation technology. We use the generated information to create a map that considers objects and person in the robot moving range. Thus, the robot can be operated safely and efficiently.

Implementation of a Pet Care Robot Based on Webcam and Smartphone and its Power Management (웹캠과 스마트폰 기반의 반려 동물 돌봄 로봇의 구현 및 전원 관리)

  • Lee, Yoon-Ho;Jeon, Joo-Hyeon;Lee, Na-Eun;Jang, Jea-Moon;Yu, Shin;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2021
  • We developed a pet care robot that can be controlled outdoors. Through the smartphone application, the pet owners can watch the situation in the house and manipulate the robot to make their pet happy. The video data in the house is transmitted to the application through the webcam installed at the house. The robot can not only perform user's command but also do six basic macro action. The obstacle avoidance function using the current sensor can be activated if the user want to use. When the robot hits to something, it moves back and rotates by arbitrary angle, and then moves forward.

An Efficient Water Pressure Measurement System of the Water Pipes using IoT (IoT를 이용한 상수도관의 효율적인 수압 측정 시스템)

  • Lee, Jae-soo;Choi, In-ho;Hong, Kwon-eui;Choi, Hak-yun;Roh, Hee-jung;Ahn, Jeong-keun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.1
    • /
    • pp.114-122
    • /
    • 2018
  • In this paper, we propose new water pressure measurement system to measure the water pressure of water pipe laid underground beneath the manhole efficiently. For this purpose, we installed water pressure sensor(IoT) which has built-in bluetooth module at valve of water pipe. The proposed system can be managed through collected data which measured at sensor and then transmitted to smart phone through bluetooth connectivity and re-transmitted to server on this system. By checking out water pressure data stored in server from remote location, the persons in charge can confirm the leakage of water pipe or propriety of water pressure in management area. By this procedure, they can detect the existence of condition of water pipe and manage water pressure of water pipe efficiently.

Iot Based Vision and Remote Control a Compact Mobile Robot System (IoT 기반의 비전 및 원격제어 소형 이동 로봇 시스템)

  • Jeon, Yun Chae;Choi, Hyeri;Yoon, Ki-Cheol;Kim, Gwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Recently, the small-size mobile robots with remote-control are rapidly growth which market of mobile is increased in the world. Especially, the smart-phones are widely used for interface device in the small size of a mobile robot. The research goal is control system design which is applied to miniaturization of a mobile robot using smart-phone and it can be confirmed performance for designed system. Meanwhile, the fabrication of mini-mobile robot can also be remote-control operation through the WIFI performance of a smart-phone. The smart-phone is used to remote-control for robot operation which control data transmit to robot via the WIFI network. To drive the robot, we can observe by the smart-phone screen and it can easily adjust the robot drive condition and direction by smart-phone button. Consequentially, there was no malfunction and images were printed out well. However, in drive, because of blind spot, robot was bumped into obstacle. Therefore, the additional test is necessary to sensor for blind spot which sensor can be equipment to mobile robot. In addition, the experiment with robot object recognition is needed.