• Title/Summary/Keyword: IoT Greenhouse

Search Result 27, Processing Time 0.031 seconds

Database Design for IoT-based Greenhouse Systems

  • Kang, Chunghan;Yu, Seulgi;Moon, Junghoon
    • Agribusiness and Information Management
    • /
    • v.7 no.2
    • /
    • pp.12-18
    • /
    • 2015
  • Since 2000s, proper utilization of IoT (Internet of Things) technology is a key factor for a firm to become more competitive, and this stream is not exceptional for the food and agriculture industry. Along with this stream, Korea government organization, for example MAFRA (Ministry of Agriculture, Food and Rural Affairs), elected to adopt IoT technology, such as USN and RFID technologies, in the food and agriculture industry. Based on the IoT technology, MAFARA launched six "IoT based farm" project in 2007. IoT based farm project includes IoT based greenhouse system project, and it shows drastic efficiency in terms of cost reduction. When it comes to the productivity, however, the effect of IoT based greenhouse system is still ambiguous. In this regard, this study conducted systems analysis and design for IoT based tomato greenhouse in order to help farmers' decision making related to the productivity by establishing standardized database structure and designing output form to analyze productivity indices. Proposed systems analysis and design can be utilized as a data analysis tools by farmers. Productivity data from the proposed systems is can be used by researchers to identify the relationship among environment, plant growth and productivity. Policy makers also can refer to the data and output forms to predict the quantity of fruit during certain period and to revise production guideline more precisely.

Implementation of IoT-based carbon-neutral modular smart greenhouse (IoT 기반 탄소중립 모듈형 스마트 온실 구현)

  • Seok-Keun Park;Kil-Su Han;Min-Soon Lee;Changsun Shin
    • Smart Media Journal
    • /
    • v.12 no.5
    • /
    • pp.36-45
    • /
    • 2023
  • Recently, in digital agriculture, the types and utilization of greenhouses based on IoT are spreading, and greenhouses are being modernized, enlarged, and even factoryized using smart technology. However, a specific standardization plan has not been proposed according to the equipment for data collection in the smart greenhouse and the size or shape of the greenhouse. In other words, there is a lack of standard data for facility equipment, such as the type and number of sensors and equipment according to the size of the greenhouse, the type of greenhouse construction film and materials suitable for crops and carbon neutrality. Therefore, in this study, the suitability of the implementation, installation and quantity of IoT equipment for data collection was tested, and some standard technologies were presented through the implementation of data collection and communication methods. In addition, impact strength, tensile, tear, elongation, light transmittance, and lifespan issues for PE, PVC, and EVA, which account for about 90% of existing greenhouses, were presented, and the shape, size, and environmental problems of greenhouses made of films were presented. presented in the text. In this research paper, a standardized carbon-neutral modular smart greenhouse using nano-material film was implemented as a solution to environmental problems such as greenhouse size, farm crop type, greenhouse lifespan, and film, and its performance with existing greenhouses was analyzed and presented. Through this, we propose a modularized greenhouse that can be expanded or reduced freely without distinction in the size of the greenhouse or the shape of farmhouse crops, and the lifespan is extended and standardized. Finally, the average characteristics of greenhouses using existing PE, PVC, and EVA films and the characteristics of greenhouses using new carbon-neutral nanomaterials are compared and reviewed, and a plan to implement an expandable IoT greenhouse that supports carbon neutrality is proposed.

Development of Smart IoT Greenhouse for Home Customized Plant Growing Environment (식물 재배 환경 맞춤형 가정용 스마트 IoT 온실 개발)

  • Lee, Se-hoon;Lee, Ha-Rin;Kim, Han-Bi
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.487-488
    • /
    • 2022
  • 본 논문에서는 가정에서 식물 재배 환경에 따라 설정이 가능한 스마트 IoT 온실을 개발하였다. 개발한 온실은 사용자가 웹을 통하여 원하는 식물을 선정하면 자동으로 미니온실의 온도와 습도가 맞춰지도록 개발하였다. 온도와 습도, 물주기까지 사람이 직접 관리하는 것이 아닌 웹으로 원격 제어가 가능하기 때문에 높은 정확도와 편리함 속에서 식물을 좀 더 오랫동안 쉽게 기를 수 있을 것이라 기대된다.

  • PDF

Capacity Design of a Gateway Router for Smart Farms

  • Lee, Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • In this work, we propose an analytic framework for evaluating the quality of service and dimensioning the link capacity in the gateway router of a smart farm with a greenhouse eco-management system. Specifically, we focus on the gateway router of an IoT network that provides an access service for smart farms. We design the link capacity of a gateway router that is used for the remote management of the greenhouse eco-management system to accommodate both time-critical and delay-tolerant traffic in a greenhouse LAN. For this purpose, we first investigate the ecosystem for smart farm, and we define the specification and requirements of the greenhouse eco-management system. Second, we propose a system model for the link capacity of a gateway that is required to guarantee the delay performance of time-critical applications in the greenhouse LAN. Finally, the validity of the proposed system is demonstrated through a series of numerical experiments.

Design of ICT based Protected Horticulture for Recovering Natural Disaster (ICT기반 시설원예 재해 경감장치 설계)

  • Lee, Meong-Hun;Yoe, Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.10
    • /
    • pp.373-382
    • /
    • 2016
  • Under the Agricultural technology is influenced from climate that is requisite of seasonal. So this system will cover the problems and develop the agricultural industry as well. So far, the agricultural industry is developing however, it has the points of the weakness because of natural disasters such as wind risk and heavy snow. This paper designs system to change vinyl on the greenhouse. This is a preliminary study for the real-time feedback control of greenhouse. The study developed a wireless IoT sensor system based on authentic technology capacities, to integrate with the protected horticulture Management System. These system was used to evaluate the levels of the snow cover and wind through IoT devices. The existing greenhouse uses the warm water to clear snow or to change methods. This system will recover by changing the vinyl which is covered outside of the greenhouse. The points of the system is changing vinyl to spin pipe. It is contained extra vinyl. The effects of this system are minimized labor protected crops from natural disasters. For this purpose, the study first developed a wireless IoT sensor unit that integrates an MEMS device and wireless communication module. Also, the study developed an operating program that enables real-time response measurement. It will help operational and maintenance greenhouse as a result.

IoT-based Greenhouse Intruder Prevention (IoT 기반 비닐하우스 침입자 방지 시스템)

  • Jeong-Woo Son;Eun-ser Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.130-131
    • /
    • 2023
  • 비닐하우스는 농업 분야에서 매우 일반적으로 사용되는 구조물로, 식물을 보호하고 작물 수확량을 늘리는 데 사용된다. 그러나 비닐하우스는 보안, 위협에 취약하다. 본 논문은 비닐하우스의 보안에 대한 연구를 다룬다. 본 연구로 비닐하우스의 기존 보안 방식에서 IoT를 활용한 보안 방식으로 바꾸어 침입자의 피해에 더욱 발 빠르게 대처가 가능하게 하였다.

IoT-based Automatic Greenhouse Snow Removal System (IoT기반 비닐하우스 자동제설 시스템)

  • Jun-young Cheon;Eun-ser Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.132-133
    • /
    • 2023
  • 라즈베리파이를 이용하여 폭설로 인한 비닐하우스 붕괴 위험을 감지하고 이를 예방하는 장치를 구현하였다. 비닐하우스 상부에 설치된 압력센서를 이용해 눈이 쌓였음을 판단하고 일정량 이상이 쌓였다고 판단되면 서보모터를 이용한 제설기를 작동시킨다. 사용자는 애플리케이션을 통하여 회원가입, 로그인을 할 수 있고 제설기의 자동 또는 수동제어 여부를 결정할 수 있다.

Implementation of the Automatic Greenhouse Environment Care System (온실 환경 자동 케어 시스템의 구현)

  • Park, Cha-Hun;Lee, Ji-Hoo;Lee, Keon-Hyeong;Lee, Hak-Beom;Yoon, Tae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.303-304
    • /
    • 2022
  • 현재까지 IoT 관련 기술들은 수많이 발전해왔다. 하지만 IoT 관련 기술들이 농업에 적용된 사례는 많지 않다. 이로 인해 농업에서는 자동화로 대체가 가능한 노동들이 여전히 사람들이 직접 하고 있다. 본 논문은 농업에 종사하시는 분들의 편의성 증대와 함께 농촌의 부족한 노동력을 충족시키기 위해 센서들을 이용하여 자동화된 농업 시스템인 '온실 환경 자동 케어 시스템'을 제안한다. 기존의 사람의 노동력을 이용한 방식이 아닌 컴퓨터가 센서와 상호작용을 하여 데이터를 처리하고 온실을 제어하여 농업 종사자들의 편의성을 증대시켜 나아가 농업의 부족한 노동력을 충족 시킬 수 있다.

  • PDF

IoT-based Smart Greenhouse System

  • Rho, Jeong-Min;Kang, Jae-Yeon;Kim, Kyeong-Yeon;Park, Yu-Jin;Kong, Ki-Sok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper, we proposed a smart greenhouse system that can easily grow plants indoors without professional knowledge by using the criteria of factors affected by common plants (temperature, humidity, soil humidity), and implemented a system that can check the greenhouse state in real time and control the device remotely through mobile applications. Based on Raspberry pie and Arduino, the system measures the state of greenhouse in real time through sensors and automatically controls the device. After growing and experimenting with plants in a greenhouse for a certain period of time, it was confirmed that the environment suitable for each plant was maintained. Therefore, the smart greenhouse system in this paper is expected to improve plant cultivation efficiency and user convenience and also increase beginners' access to plants.

A Study on Energy Management System of Sport Facilities using IoT and Bigdata (사물인터넷과 빅데이터를 이용한 스포츠 시설 에너지 관리시스템에 관한 연구)

  • Kwon, Yong-Kwang;Heo, Jun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.59-64
    • /
    • 2020
  • In the Paris Climate Agreement, Korea submitted an ambitious goal of reducing the greenhouse gas emission forecast (BAU) by 37% by 2030. And as one of the countermeasures, a smart grid, an intelligent power grid, was presented. In order to apply the smart grid, EMS(Energy Management System) needs to be installed and operated in various fields, and the supply is delayed due to the lack of awareness of users and the limitations of system ROI. Therefore, recently, various data analysis and control technologies have been proposed to increase the efficiency of the installed EMS. In this study, we present a measurement control algorithm that analyzes and predicts big data collected by IoT using a SARIMA model to check and operate energy consumption of public sports facilities.