• Title/Summary/Keyword: IoT Device Security

Search Result 204, Processing Time 0.022 seconds

Cloud security authentication platform design to prevent user authority theft and abnormal operation during remote control of smart home Internet of Things (IoT) devices (스마트 홈 사물인터넷 기기(IoT)의 원격제어 시 사용자 권한 탈취 및 이상조작 방지를 위한 클라우드 보안인증 플랫폼 설계)

  • Yoo Young Hwan
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • The use of smart home appliances and Internet of Things (IoT) devices is growing, enabling new interactions and automation in the home. This technology relies heavily on mobile services which leaves it vulnerable to the increasing threat of hacking, identity theft, information leakage, serious infringement of personal privacy, abnormal access, and erroneous operation. Confirming or proving such security breaches have occurred is also currently insufficient. Furthermore, due to the restricted nature of IoT devices, such as their specifications and operating environments, it is difficult to provide the same level of internet security as personal computers. Therefore, to increase the security on smart home IoT devices, attention is needed on (1) preventing hacking and user authority theft; (2) disabling abnormal manipulation; and (3) strengthening audit records for device operation. In response to this, we present a plan to build a cloud security authentication platform which features security authentication management functionality between mobile terminals and IoT devices.

Independent Firmware Design to Reduce Device Heterogeneity in LAN WAS for IoT Environment (IoT 환경을 위한 Local WAS에서 디바이스 이질성을 줄이는 독립적인 Firmware 설계)

  • Kyung-Ho Lee;Eun-Ah Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.803-808
    • /
    • 2023
  • The IoT industry is growing at a record growth rate every year, but developers face practical problems such as security, data storage, and heterogeneity between devices before developing an IoT platform. In particular, heterogeneity between devices occurs due to network type and protocol, and device firmware must be changed or multiple IoT platforms must be used in some cases. In addition, data is wasted due to redundant sensing due to the overflow of indiscriminate IoT devices. In this paper, we propose a device-independent firmware design to solve the heterogeneity between devices in the IoT platform environment where Local WAS uses the MQTT protocol.

A Study of End-to-End Message Security Protocol Based on Lightweight Ciphers for Smart IoT Devices (스마트 IoT 디바이스를 위한 경량 암호기반 종단간 메시지 보안 프로토콜)

  • Kim, Hee-jeong;Kim, Jeong Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1309-1317
    • /
    • 2018
  • Although the IoT market is steadily growing, there is still a lack of consideration for increasing security threats in the IoT environment. In particular, it is difficult to apply existing IP security technology to resource-constrained devices. Therefore, there is a demand for reliable end-to-end communication security measures to cope with security threats such as information tampering and leakage that may occur during communication between heterogeneous networks do. In this paper, we propose an end-to-end message security protocol based on lightweight cipher that increases security and lowers security overhead in resource-constrained IoT device communication. Through simulation of processing time, we verified that the proposed protocol has better performance than the existing AES-based protocol.

A Study on gateway authentication protocol in IoT (IoT에서 게이트웨이에 대한 인증 프로토콜에 관한 연구)

  • Lee, Jae-Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.91-96
    • /
    • 2017
  • IoT which is an abbreviation of Internet of Things refers to the communication network service among various objects such as people-people, objects-objects interconnection. The characteristic of IoT that enables direct connection among each device makes security to be considered as more emphasized factor. Though a security module such as an authentication protocol for resolving various security problems that may occur in the IoT environment has been developed, some weak points in security are still being revealed. Therefore, this paper proposes a method for including a protocol including gateway authentication procedure and mutual authentication between the devices and gateways. Protocols with additional authentication procedures can appropriately respond to attackers' spoofing attacks. In addition, important information in the message used for authentication process is protected by encryption or hash function so that it can respond to wiretapping attacks.

Analysis of IoT Open-Platform Cryptographic Technology and Security Requirements (IoT 오픈 플랫폼 암호기술 현황 및 보안 요구사항 분석)

  • Choi, Jung-In;Oh, Yoon-Seok;Kim, Do-won;Choi, Eun Young;Seo, Seung-Hyun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.7
    • /
    • pp.183-194
    • /
    • 2018
  • With the rapid development of IoT(Internet of Things) technology, various convenient services such as smart home and smart city have been realized. However, IoT devices in unmanned environments are exposed to various security threats including eavesdropping and data forgery, information leakage due to unauthorized access. To build a secure IoT environment, it is necessary to use proper cryptographic technologies to IoT devices. But, it is impossible to apply the technologies applied in the existing IT environment, due to the limited resources of the IoT devices. In this paper, we survey the classification of IoT devices according to the performance and analyze the security requirements for IoT devices. Also we survey and analyze the use of cryptographic technologies in the current status of IoT open standard platform such as AllJoyn, oneM2M, IoTivity. Based on the research of cryptographic usage, we examine whether each platform satisfies security requirements. Each IoT open platform provides cryptographic technology for supporting security services such as confidentiality, integrity, authentication an authorization. However, resource constrained IoT devices such as blood pressure monitoring sensors are difficult to apply existing cryptographic techniques. Thus, it is necessary to study cryptographic technologies for power-limited and resource constrained IoT devices in unattended environments.

Edge-Centric Metamorphic IoT Device Platform for Efficient On-Demand Hardware Replacement in Large-Scale IoT Applications (대규모 IoT 응용에 효과적인 주문형 하드웨어의 재구성을 위한 엣지 기반 변성적 IoT 디바이스 플랫폼)

  • Moon, Hyeongyun;Park, Daejin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1688-1696
    • /
    • 2020
  • The paradigm of Internet-of-things(IoT) systems is changing from a cloud-based system to an edge-based system to solve delays caused by network congestion, server overload and security issues due to data transmission. However, edge-based IoT systems have fatal weaknesses such as lack of performance and flexibility due to various limitations. To improve performance, application-specific hardware can be implemented in the edge device, but performance cannot be improved except for specific applications due to a fixed function. This paper introduces a edge-centric metamorphic IoT(mIoT) platform that can use a variety of hardware through on-demand partial reconfiguration despite the limited hardware resources of the edge device, so we can increase the performance and flexibility of the edge device. According to the experimental results, the edge-centric mIoT platform that executes the reconfiguration algorithm at the edge was able to reduce the number of server accesses by up to 82.2% compared to previous studies in which the reconfiguration algorithm was executed on the server.

Smart Centralized Remote Security Service Provisioning Framework for Open ICT Environment (개방형 ICT 환경을 위한 집중식 원격 보안 서비스 프로비저닝 프레임워크 구성 방안)

  • Park, Namje
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.2
    • /
    • pp.81-88
    • /
    • 2016
  • Machine-to-Machine (M2M) communication provides each component (machine) with access to Internet, evolving into the IoT technology. IoT is a trend where numbers of devices provide the communication service, using the Internet protocol. As spreading the concept of IoT(Internet of Things), various objects become home information sources. According to the wide spread of various devices, it is difficult to access data on the devices with unified manners. Under this environment, security is a critical element to create various types of application and service. In this paper propose the inter-device authentication and Centralized Remote Security Provisioning framework in Open M2M environment. The results of previous studies in this task is carried out by protecting it with the latest information on M2M / IoT and designed to provide the ultimate goal of future M2M / IoT optimized platform that can be integrated M2M / IoT service security and security model presents the information.

Cyber KillChain Based Security Policy Utilizing Hash for Internet of Things (해시를 활용한 사이버킬체인 기반의 사물인터넷 보안 정책)

  • Jeong, So-Won;Choi, Yu-Rim;Lee, Il-Gu
    • Journal of Digital Convergence
    • /
    • v.16 no.9
    • /
    • pp.179-185
    • /
    • 2018
  • Technology of Internet of Things (IoT) which is receiving the spotlight recently as a new growth engine of Information Communications Technology (ICT) industry in the $4^{th}$ Industrial Revolution needs trustworthiness beyond simple technology of security. IoT devices should consider trustworthiness from planning and design of IoTs so that everyone who develop, evaluate and use the device can measure and trust its security. Increased number of IoTs and long lifetime result in the increased securituy vulnerability due to the difficulty of software patch and update. In this paper, we investigated security and scalability issues of current IoT devices through research of the technical, political and industrial trend of IoT. In order to overcome the limitations, we propose an automatic verification of software integrity utilizing and a political solution to apply cyber killchain based security mechanism using hash which is an element technology of blockchain to solve these problems.

Software Code Attestation for IoT Devices by Bluetooth Low Energy (저전력 블루투스를 통한 사물 인터넷 장치의 소프트웨어적인 코드 검증)

  • Kim, GeunYoung;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.5
    • /
    • pp.1211-1221
    • /
    • 2016
  • In IoT environment, making sure of trust of IoT devices is the most important one than others. The security threats of nowadays almost stay at exposure or tampering of information. However, if human life is strongly connected to the Internet by IoT devices, the security threats will probably target human directly. In case of devices, authentication is verified using the device-known private key. However, if attacker can modify the device physically, knowing the private key cannot be the evidence of trust any more. Thus, we need stronger verification method like code attestation. In this paper, we use software-based code attestation for efficiency. We also suggest secure code attestation method against copy of original code and implement it on embedded device and analyze its performance.

Secure Configuration Scheme of Pre-shared Key for Lightweight Devices in Internet of Things (사물인터넷의 경량화 장치를 위한 안전한 Pre-shared Key 설정 기술)

  • Kim, Jeongin;Kang, Namhi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2015
  • The IoT(Internet of things) technology enable objects around user to be connected with each other for sharing information. To support security is the mandatory requirement in IoT because it is related to the disclosure of private information but also directly related to the human safety. However, it is difficult to apply traditional security mechanism into lightweight devices. This is owing to the fact that many IoT devices are generally resource constrained and powered by battery. PSK(Pre-Shared Key) based approach, which share secret key in advance between communication entities thereafter operate security functions, is suitable for light-weight device. That is because PSK is costly efficient than a session key establishment approach based on public key algorithm. However, how to safely set a PSK of the lightweight device in advance is a difficult issue because input/output interfaces such as keyboard or display are constrained in general lightweight devices. To solve the problem, we propose and develop a secure PSK configuration scheme for resource constrained devices in IoT.