• Title/Summary/Keyword: IoT Device Framework

Search Result 35, Processing Time 0.021 seconds

A Study on IoT Devices Vulnerability and Security (IoT 디바이스 보안위협 및 대응방안 연구)

  • Yoo, Seung Jae
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Numerous IoT devices are connected to a wireless network environment to collect and transmit data without time and space limitations, but many security vulnerabilities are exposed in these process. But IoT security is not easy to create feasible security standards and device authentication due to differences in the approach or implementation of devices and networks. However, it is clear that the improvement and application of the standard framework for enhancing the security level of the device is the starting point to help the most successful security effect. In this study, we investigate the confidentiality, integrity, availability, and access control implementation plans for IoT devices (which are the basic goals of information security), and standardized security evaluation criteria for IoT devices, and study ways to improve them.

Smart Centralized Remote Security Service Provisioning Framework for Open ICT Environment (개방형 ICT 환경을 위한 집중식 원격 보안 서비스 프로비저닝 프레임워크 구성 방안)

  • Park, Namje
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.2
    • /
    • pp.81-88
    • /
    • 2016
  • Machine-to-Machine (M2M) communication provides each component (machine) with access to Internet, evolving into the IoT technology. IoT is a trend where numbers of devices provide the communication service, using the Internet protocol. As spreading the concept of IoT(Internet of Things), various objects become home information sources. According to the wide spread of various devices, it is difficult to access data on the devices with unified manners. Under this environment, security is a critical element to create various types of application and service. In this paper propose the inter-device authentication and Centralized Remote Security Provisioning framework in Open M2M environment. The results of previous studies in this task is carried out by protecting it with the latest information on M2M / IoT and designed to provide the ultimate goal of future M2M / IoT optimized platform that can be integrated M2M / IoT service security and security model presents the information.

Framework design for efficient Arduino program development

  • Gong, Dong-Hwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.162-169
    • /
    • 2022
  • Arduino is used in various places such as education, experimentation, and industry. Due to the easy accessibility of Arduino, it is often used by non-majors, and it is also used in media art and toy programs. Although Arduino is relatively easy to use compared to other devices, it is not easy to control various IoT components at the same time. Some tasks run independently of other tasks, while others run dependently. In this paper, I proposed the Arduino Task Framework to efficiently execute many tasks in these various situations. The design framework of this paper is largely composed of two types: synchronous execution and asynchronous execution. These two execution methods can be combined to create several independent and dependent execution routines. Asynchronous tasks are independently executed tasks and are managed by AsyncTaskGroup, while synchronous tasks are dependently executed tasks and are managed by SyncTaskGroup. AsyncTaskGroup instance and SyncTaskGroup instance are instances of the same Task and can be used in combination with another task. The Arduino framework proposed in this paper simplifies the program structure and can easily compose various tasks.

Handling Streaming Data by Using Open Source Framework Storm in IoT Environment (오픈소스 프레임워크 Storm을 활용한 IoT 환경 스트리밍 데이터 처리)

  • Kang, Yunhee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.313-318
    • /
    • 2016
  • To utilize sensory data, it is necessary to design architecture for processing and handling data generated from sensors in an IoT environment. Especially in the IoT environment, a thing connects to the Internet and efficiently enables to communicate a device with diverse sensors. But Hadoop and Twister based on MapReduce are good at handling data in a batch processing. It has a limitation for processing stream data from a sensor in a motion. Traditional streaming data processing has been mainly applied a MoM based message queuing system. It has maintainability and scalability problems because a programmer should consider details related with complex messaging flow. In this paper architecture is designed to handle sensory data aggregated The designed software architecture is used to operate an application on the open source framework Storm. The application is conceptually used to transform streaming data which aggregated via sensor gateway by pipe-filter style.

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System (Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크)

  • Hong, Gyeonghwan;Park, Eunsoo;Choi, Sihoon;Shin, Dongkun
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.710-717
    • /
    • 2016
  • Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

Green Device to Device Task Management Framework by Mobile Edge Computing in IoT Environment (IoT 환경에서 모바일 엣지 컴퓨팅을 통한 디바이스간 타스크 관리 프레임워크)

  • Ko, Kwang-Man;Ranji, Ramtin;Mansoor, Ali;Kim, Soon-Gohn
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.85-87
    • /
    • 2018
  • Motivating by two promising technique of 5G, namely D2D and Edge computing, and the above mentioned problem of the current joint studies, We believe that more study is needed on the benefits of joining these two techniques in a single framework by more precisely taking into account the energy needed to computation, sending data, receiving data and as a result achieving more realistic energy efficiency in 5G cellular networks.

A Hybrid Blockchain-Based Approach for Secure and Efficient IoT Identity Management

  • Abdulaleem Ali Almazroi;Nouf Atiahallah Alghanmi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.11-25
    • /
    • 2024
  • The proliferation of IoT devices has presented an unprecedented challenge in managing device identities securely and efficiently. In this paper, we introduce an innovative Hybrid Blockchain-Based Approach for IoT Identity Management that prioritizes both security and efficiency. Our hybrid solution, strategically combines the advantages of direct and indirect connections, yielding exceptional performance. This approach delivers reduced latency, optimized network utilization, and energy efficiency by leveraging local cluster interactions for routine tasks while resorting to indirect blockchain connections for critical processes. This paper presents a comprehensive solution to the complex challenges associated with IoT identity management. Our Hybrid Blockchain-Based Approach sets a new benchmark for secure and efficient identity management within IoT ecosystems, arising from the synergy between direct and indirect connections. This serves as a foundational framework for future endeavors, including optimization strategies, scalability enhancements, and the integration of advanced encryption methodologies. In conclusion, this paper underscores the importance of tailored strategies in shaping the future of IoT identity management through innovative blockchain integration.

An Integrated Framework for Modeling the Influential Factors Affecting the Use of Voice-Enabled IoT Devices: A Case Study of Amazon Echo

  • Temidayo Oluwapelumi Shofolahan;Juyoung Kang
    • Asia pacific journal of information systems
    • /
    • v.28 no.4
    • /
    • pp.320-349
    • /
    • 2018
  • Purpose: The application of IoT is finding continuous acceptance in our daily lives, particularly, smart speakers are making life easier and convenient for consumers. This research aims to develop and test an integrated model of factors influencing consumer's adoption of voice-enabled IoT devices. Design/methodology/approach: Based on the VAM, an integrated voice-enabled IoT device adoption model is proposed. Gender differences on five constructs relating with perceived value (perceived usefulness, perceived enjoyment, perceived security risk, perceived technicality and perceived cost) was also examined through PLS-MGA technique. The usage experience of consumers was also controlled in the integrated VAM. Findings: Result shows that Perceived-Usefulness, Perceived-Enjoyment and Perceived-Cost have a strong effect on Perceived-Value. However, Perceived-Technicality and Perceived-Security-Risk are non-influential and have no significant effect on PV. Additionally, Perceived-Value and Social-Influence plays a significant role in predicting adoption intention. Gender differences also exist in consumers perception of usefulness, enjoyment and cost. In comparison to the basic value-based adoption model, the integrated model provides more insight on consumers adoption of voice-enabled IoT devices. Originality/value: Using an integrated model, this study is one of the first scholarly attempt at modelling the influential factors for adopting smart speakers i.e., voice-enabled IoT devices, with implications for improved adoption.

A Study for Implementation of System for protecting Privacy data from IoT Things (IoT 장치의 개인정보 데이터 보호 시스템 구현에 관한 연구)

  • Kim, Seon Uk;Hong, Seong Eun;Bang, Jun Il;Kim, Hwa Jong
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.84-91
    • /
    • 2021
  • In the EU GDPR, when collecting personal information, the right of the information subject(user) to consent or refuse is given the highest priority. Therefore, the information subject must be able to withdraw consent and be forgotten and claim the right at any time. Especially, restricted IoT devices(Constrained Node) implement the function of consent of the data subject regarding the collection and processing of privacy data, and it is very difficult to post the utilization content of the collected information. In this paper, we designed and implemented a management system that allows data subjects to monitor data collected and processed from IoT devices, recognize information leakage problems, connect, and control devices. Taking into account the common information of the standard OCF(Open Connectivity Foundation) of IoT devices and AllJoyn, a device connection framework, 10 meta-data for information protection were defined, and this was named DPD (Data Protection Descriptor). we developed DPM (Data Protection Manager), a software that allows information subjects to manage information based on DPD.

Cross-Technology Localization: Leveraging Commodity WiFi to Localize Non-WiFi Device

  • Zhang, Dian;Zhang, Rujun;Guo, Haizhou;Xiang, Peng;Guo, Xiaonan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3950-3969
    • /
    • 2021
  • Radio Frequency (RF)-based indoor localization technologies play significant roles in various Internet of Things (IoT) services (e.g., location-based service). Most such technologies require that all the devices comply with a specified technology (e.g., WiFi, ZigBee, and Bluetooth). However, this requirement limits its application scenarios in today's IoT context where multiple devices complied with different standards coexist in a shared environment. To bridge the gap, in this paper, we propose a cross-technology localization approach, which is able to localize target nodes using a different type of devices. Specifically, the proposed framework reuses the existing WiFi infrastructure without introducing additional cost to localize Non-WiFi device (i.e., ZigBee). The key idea is to leverage the interference between devices that share the same operating frequency (e.g., 2.4GHz). Such interference exhibits unique patterns that depend on the target device's location, thus it can be leveraged for cross-technology localization. The proposed framework uses Principal Components Analysis (PCA) to extract salient features of the received WiFi signals, and leverages Dynamic Time Warping (DTW), Gradient Boosting Regression Tree (GBRT) to improve the robustness of our system. We conduct experiments in real scenario and investigate the impact of different factors. Experimental results show that the average localization accuracy of our prototype can reach 1.54m, which demonstrates a promising direction of building cross-technology technologies to fulfill the needs of modern IoT context.