• Title/Summary/Keyword: IoT Device

Search Result 798, Processing Time 0.027 seconds

A Study of Data Communication Between the Web and the IoT Platform in WoT (WoT 환경에서 웹과 IoT 플랫폼 사이의 데이터 통신 연구)

  • Phyo, Gyung-soo;Park, Jin-tae;Moon, Il-young
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.4
    • /
    • pp.374-379
    • /
    • 2016
  • Recently, IoT(Internet of Things) to connect the objects and people has attracted attention. And it is rapidly developing. IoT is to develop, experts are predicting that the device is connected to the Internet to break through around 100 billion within 10 years. However, the current IoT companies are having a difficult state to the other each other IoT platform for interaction between data silos effects. These silos effects will limit the IoT grow to a larger market. Thus, the IoT service supplier shall develop an open platform for interaction IoT data between each IoT platform. These web technologies for current open IoT platform has emerged. If developers are using familiar, easy-to-learn Web technologies, developers can take advantage of a variety of services for the collected data, and found the IoT devices can be bypassed if there is a problem on the network. In this paper, we investigate the data communications technology that can be used in WoT environment to overcome these silos effects. As a result, the polling method that can simply send the IoT information the fastest.

A Study of Temporary Positioning Scheme with IoT devices for Disastrous Situations in Indoor Spaces Without Permanent Network Infrastructure (상설 네트워크 인프라가 없는 실내 공간에서 재난시 IoT 기기를 활용한 부착형 실내 위치 추적 기술 연구)

  • Lee, Jeongpyo;Yun, Younguk;Kim, Sangsoo;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.315-324
    • /
    • 2018
  • Purpose: This paper propose a temporary indoor positioning scheme with devices of internet of things (IoT) for disastrous situations in places without the infrastructure of networks. Method: The proposed scheme is based on the weighted centroid localization scheme that can estimate the position of a target with simple computation. Results: It also is implemented with the IoT devices at the underground parking lot, where the network is not installed, of general office building. According to the experiment results, the positioning error was around 10m without a priori calibration process at $82.5m{\times}56.4m$ underground space. Conclusion: The proposed scheme can be deployed many places without the infrastructure of networks, such as parking lots, warehouses, factory, etc.

Hash-based SSDP for IoT Device Security (IoT 기기 보안을 위한 해시 기반의 SSDP)

  • Kim, Hyo-Jong;Han, Kun-Hee;Shin, Seung-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.9-16
    • /
    • 2021
  • Due to the prolonged infectious disease of COVID-19 worldwide, there are various security threats due to network attacks on Internet of Things devices that are vulnerable to telecommuting. Initially, users of Internet of Things devices were exploited for vulnerabilities in Remote Desktop Protocol, spear phishing and APT attacks. Since then, the technology of network attacks has gradually evolved, exploiting the simple service discovery protocol of Internet of Things devices, and DRDoS attacks have continued to increase. Existing SSDPs are accessible to unauthorized devices on the network, resulting in problems with information disclosure and amplification attacks on SSDP servers. To compensate for the problem with the authentication procedure of existing SSDPs, we propose a hash-based SSDP that encrypts server-specific information with hash and adds authentication fields to both Notify and M-Search message packets to determine whether an authorized IoT device is present.

Implementation of IoT System for Wireless Acquisition of Vibration and Environmental Data in Distributing Board (제진형 배전반의 진동 및 환경 데이터수집을 위한 IoT 시스템 구현)

  • Lee, Byeong-Yeong;Lee, Young-Dong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.4
    • /
    • pp.199-205
    • /
    • 2021
  • The distributing board in directly installed on the ground or the bottom surface of the building, and when vibrations such as earthquakes or external shocks occur, the possibility of damage or malfunction of electric components such as internal power devices, wiring, and protection relays increases. Recently, the need for a seismic type distributing board is increasing, and research and development of a distributing board having a vibration damping function and product launch are being conducted. In this paper, an IoT-based data collection device system capable of measuring vibration and environmental data of distributing board was designed and implemented. When vibration occurred on the distributing board, data was stored and visualized in the MySQL DB through Node-RED for monitoring and data storage using the MQTT protocol for reliable messaging transmission. The test was conducted by attaching the IoT device of the distributing board, and data was collected in real-time and monitored through Node-RED.

Machine Learning-based Detection of DoS and DRDoS Attacks in IoT Networks

  • Yeo, Seung-Yeon;Jo, So-Young;Kim, Jiyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2022
  • We propose an intrusion detection model that detects denial-of-service(DoS) and distributed reflection denial-of-service(DRDoS) attacks, based on the empirical data of each internet of things(IoT) device by training system and network metrics that can be commonly collected from various IoT devices. First, we collect 37 system and network metrics from each IoT device considering IoT attack scenarios; further, we train them using six types of machine learning models to identify the most effective machine learning models as well as important metrics in detecting and distinguishing IoT attacks. Our experimental results show that the Random Forest model has the best performance with accuracy of over 96%, followed by the K-Nearest Neighbor model and Decision Tree model. Of the 37 metrics, we identified five types of CPU, memory, and network metrics that best imply the characteristics of the attacks in all the experimental scenarios. Furthermore, we found out that packets with higher transmission speeds than larger size packets represent the characteristics of DoS and DRDoS attacks more clearly in IoT networks.

Methods for Enhancing Reliability of On-Ground IoT Applications (지상용 IoT 애플리케이션의 신뢰성 향상 기법)

  • Shin, Dong Ha;Han, Seung Ho;Kim, Soo Dong;Her, Jin Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.4
    • /
    • pp.151-160
    • /
    • 2015
  • Internet-of-Things(IoT) is the computing environment to provide valuable services by interacting with multiple devices, where diverse devices are connected within the existing Internet infrastructure and acquire context information by sensing. As the concern of IoT has been increased recently, most of the industries develop many IoT devices. And, many people are focused on the IoT application that is utilizing different technologies, which are sensor network, communication technologies, and software engineering. Developing on-ground IoT application is especially even more active in progress depending on increasing of on-ground IoT devices because it is possible for them to access dangerous and inaccessible situation. However, There are a few studies related IoT. Moreover, since on-ground IoT application, which is different from typical software application, has to consider device's characteristics, communication, and surround condition, it reveal challenges, decreasing reliability. Therefore, in this paper, we analyze reliability challenges related to maturity and fault tolerance, one of reliability attributes, occurring in developing on-ground IoT applications and suggest the effective solutions to resolve the challenges. To verify proposed the challenges and solutions, we show result that is applying the solutions to applications. By presenting the case study, we evaluate the effectiveness of applying the solutions to the application.

Market in Medical Devices of Blockchain-Based IoT and Recent Cyberattacks

  • Shih-Shuan WANG;Hung-Pu (Hong-fu) CHOU;Aleksander IZEMSKI ;Alexandru DINU;Eugen-Silviu VRAJITORU;Zsolt TOTH;Mircea BOSCOIANU
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.2
    • /
    • pp.39-44
    • /
    • 2023
  • The creativity of thesis is that the significance of cyber security challenges in blockchain. The variety of enterprises, including those in the medical market, are the targets of cyberattacks. Hospitals and clinics are only two examples of medical facilities that are easy targets for cybercriminals, along with IoT-based medical devices like pacemakers. Cyberattacks in the medical field not only put patients' lives in danger but also have the potential to expose private and sensitive information. Reviewing and looking at the present and historical flaws and vulnerabilities in the blockchain-based IoT and medical institutions' equipment is crucial as they are sensitive, relevant, and of a medical character. This study aims to investigate recent and current weaknesses in medical equipment, of blockchain-based IoT, and institutions. Medical security systems are becoming increasingly crucial in blockchain-based IoT medical devices and digital adoption more broadly. It is gaining importance as a standalone medical device. Currently the use of software in medical market is growing exponentially and many countries have already set guidelines for quality control. The achievements of the thesis are medical equipment of blockchain-based IoT no longer exist in a vacuum, thanks to technical improvements and the emergence of electronic health records (EHRs). Increased EHR use among providers, as well as the demand for integration and connection technologies to improve clinical workflow, patient care solutions, and overall hospital operations, will fuel significant growth in the blockchain-based IoT market for linked medical devices. The need for blockchain technology and IoT-based medical device to enhance their health IT infrastructure and design and development techniques will only get louder in the future. Blockchain technology will be essential in the future of cybersecurity, because blockchain technology can be significantly improved with the cybersecurity adoption of IoT devices, i.e., via remote monitoring, reducing waiting time for emergency rooms, track assets, etc. This paper sheds the light on the benefits of the blockchain-based IoT market.

Things Recommendation Method using Social Relationship in Social Internet of Things (소셜 사물인터넷에서 소셜 관계를 이용한 사물 추천 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.49-59
    • /
    • 2014
  • The Internet of Things(IoT) is a new promising technology made from a variety of technology. The IoT links the objects or people, then enabling anytime, anywhere connectivity for anything and not only for anyone. Social networking services have changed the way people communicate. Recently, new research challenges in many areas of Internet of things and social networking services are fired. In this paper, we propose things recommendation method using social relationship in social Internet of Things. We study previous researches about social network service, IoT, and social IoT. We proposed SIoT_FW(Social IoT Friendship Weight) using static and a dynamic social friendship weight. Also, our method considers four social relationships (Ownership Object Relationship, Co-Location Object Relationship, Social Object Relationship, Parental Object Relationship). We presents a music device scenario using our proposed method.

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.51-57
    • /
    • 2019
  • In this paper, we analyzed the performance of IoT based smart wearable mine detection device. There are various mine detection methods currently used by the military. Still, in the general field, mine detection is performed by visual detection, probe detection, detector detection, and other detection methods. The detection method by the detector is using a GPR sensor on the detector, which is possible to detect metals, but it is difficult to identify non-metals. It is hard to distinguish whether the area where the detection was performed or not. Also, there is a problem that a lot of human resources and time are wasted, and if the user does not move the sensor at a constant speed or moves too fast, it is difficult to detect landmines accurately. Therefore, we studied the smart wearable mine detection device composed of human body antenna, main microprocessor, smart glasses, body-mounted LCD monitor, wireless data transmission, belt type power supply, black box camera, which is to improve the problem of the error of mine detection using unidirectional ultrasonic sensing signal. Based on the results of this study, we will conduct an experiment to confirm the possibility of detecting underground mines based on the Internet of Things (IoT). This paper consists of an introduction, experimental environment composition, simulation analysis, and conclusion. Introduction introduces the research contents such as mines, mine detectors, and research progress. It consists of large anti-personnel mine, M16A1 fragmented anti-mine, M15 and M19 antitank mines, plastic bottles similar to mines and aluminum cans. Simulation analysis is conducted by using MATLAB to analyze the mine detection device implementation performance, generating and transmitting IoT signals, and analyzing each received signal to verify the detection performance of landmines. Then we will measure the performance through the simulation of IoT-based mine detection algorithm so that we will prove the possibility of IoT-based detection landmine.

A Meta-Model for Development Process of IoT Application by Using UML

  • Cho, Eun-Sook;Song, Chee-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.121-128
    • /
    • 2019
  • An Internet of Things(IoT) technology which provides intelligent services by combining context-awareness based intelligences, inter-communication is made of between things and things or between things and person through the network connected with intelligent things is spreading rapidly. Especially as this technology is converged into smart device, mobile, cloud, big data technologies, it is applied into various domains. Therefore, this is different from existing Web or Mobile Application. New types of IoT applications are emerging by adapting IoT into Web or mobile. Because IoT application is not only focused on software but also considering hardware or things aspect, there are limitations existing development process. Existing development processes don't consider analysis and design techniques considering both hardware and things. We propose not only a meta-model for development process which can support IoT application's development but also meta-models for main activities in this paper. Especially we define modeling elements by using UML's extension mechanisms, provide development process, and suggest design techniques how to apply those elements into IoT application's modeling phase. Because there are many types of IoT application's type, we propose an Android and Arduino-based on IoT application as a case study. We expect that proposed technique can be applied into many of various IoT application development and design with a form of flexible and extensible as well as main functionalities or elements are more concretely described. As a result, it brings IoT application's flexibility and the effect of quality improvement.