• 제목/요약/키워드: Inverter-Based DG(Distributed Generator)

검색결과 5건 처리시간 0.019초

A New Islanding Detection Method using Phase-Locked Loop for Inverter-Interfaced Distributed Generators

  • Chung, Il-Yop;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.165-171
    • /
    • 2007
  • This paper proposes a new islanding detection method for inverter-interfaced distributed generators (DG). To detect islanding conditions, this paper calculates the phase angle variation of the system voltage by using the phase-locked loop (PLL) in the inverter controllers. Because almost all inverter systems are equipped with the PLL, the implementation of this method is fairly simple and economical for inverter-interfaced DGs. The detection time can also be shortened by reducing communication delay between the relays and the DGs. The proposed method is based on the fact that islanding conditions result in the frequency and voltage variation of the islanded area. The variation depends on the amount of power mismatch. To improve the accuracy of the detection algorithm, this paper injects small low-frequency reactive power mismatch to the output power of DG.

Power Sharing Method for a Grid connected Microgrid with Multiple Distributed Generators

  • Nguyen, Khanh-Loc;Won, Dong-Jun;Ahn, Seon-Ju;Chung, Il-Yop
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권4호
    • /
    • pp.459-467
    • /
    • 2012
  • In this paper, a grid connected microgrid with multiple inverter-based distributed generators (DGs) is considered. DG in FFC mode regulates the microgrid as a controllable load from the utility point of view as long as its output is within the capacity limit. The transition mode causes a change in frequency of microgrid due to the loss of power transferred between main grid and microgrid. Frequency deviation from the nominal value can exceed the limit if the loss of power is large enough. This paper presents a coordinated control method for inverter-based DGs so that the microgrid is always regulated as a constant load from the utility viewpoint during grid connected mode, and the frequency deviation in the transition mode is minimized. DGs can share the load by changing their control modes between UPC and FFC and stabilize microgrid during transition.

Flexible Voltage Support Control with Imbalance Mitigation Capability for Inverter-Based Distributed Generation Power Plants under Grid Faults

  • Wang, Yuewu;Yang, Ping;Xu, Zhirong
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1551-1564
    • /
    • 2016
  • The high penetration level of inverter-based distributed generation (DG) power plants is challenging the low-voltage ride-through requirements, especially under unbalanced voltage sags. Recently, a flexible injection of both positive- (PS) and negative-sequence (NS) reactive currents has been suggested for the next generation of grid codes. This can enhance the ancillary services for voltage support at the point of common coupling (PCC). In light of this, considering distant grid faults that occur in a mainly inductive grid, this paper proposes a complete voltage support control scheme for the interface inverters of medium or high-rated DG power plants. The first contribution is the development of a reactive current reference generator combining PS and NS, with a feature to increase the PS voltage and simultaneously decrease the NS voltage, to mitigate voltage imbalance. The second contribution is the design of a voltage support control loop with two flexible PCC voltage set points, which can ensure continuous operation within the limits required in grid codes. In addition, a current saturation strategy is also considered for deep voltage sags to avoid overcurrent protection. Finally, simulation and experimental results are presented to validate the effectiveness of the proposed control scheme.

Islanding Detection Method for Inverter-based Distributed Generation Systems using a Signal Cross-correlation Scheme

  • Bae, Byung-Yeol;Jeong, Jong-Kyou;Lee, Ji-Heon;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • 제10권6호
    • /
    • pp.762-768
    • /
    • 2010
  • This paper describes the development of a new islanding detection method for inverter-based distributed generation systems, which uses a signal cross-correlation scheme between the injected reactive current and the power frequency deviation. The proposed method injects 1% of the reactive current to the rated current which brings about a negligible degradation of the power quality. It discriminates the islanding state, when the calculated cross-correlation index is larger than 0.5. The operational feasibility was verified through computer simulations with PSCAD/EMTDC software and experimental research with a hardware prototype. The proposed method can detect the islanding state without degrading the power quality at the point of common connection. Further study is required to overcome the cancellation of the injected reactive current from multiple distributed generation units interconnected with the utility grid.

다중 분산전원으로 구성된 마이크로그리드의 유무효전력 제어원리 연구 (Power Control Methods for Microgrid with Multiple Distributed Generators)

  • 정일엽;원동준;문승일
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.582-588
    • /
    • 2008
  • Microgrids are new distribution level power networks that consist of various electronically-interlaced generators and sensitive loads. The important control object of Microgrids is to supply reliable and high-quality power even during the faults or loss of mains(islanding) cases. This paper presents power control methods to coordinate multiple distributed generators(DGs) against abnormal cases such as islanding and load power variations. Using speed-droop and voltage-droop characteristics, multiple distributed generators can share the load power based on locally measured signals without any communications between them. This paper adopts the droop controllers for multiple DG control and improved them by considering the generation speed of distribution level generators. Dynamic response of the proposed control scheme has been investigated under severe operation cases such as islanding and abrupt load changes through PSCAD/EMTDC simulations.