• Title/Summary/Keyword: Invertebrate animals

Search Result 21, Processing Time 0.028 seconds

Botulism in a Mute Swan(Cygnus olor) (혹고니(Cygnus olor)의 보툴리눔독소증)

  • Kim, Young Seob;Kim, Bo Suk;Shin, Nam Shik
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.2
    • /
    • pp.161-165
    • /
    • 2008
  • Many neurotoxigenic clostridia are found in soil. Among animals, birds are especially susceptible to botulism, perhaps because they feed on insects, invertebrate carcasses, and decayed feeds contaminated with spores of Clostridium (C.) botulinum. C. botulinum type C is mainly involved in avian botulism. In the summer of 2005, death of a mute swan (cygnus olor) living in the pond of large bird cage was found in Seoul Grand Park Zoo. The birds presented presumptive clinical signs of botulism, such as ruffled hackle feathers, abnormal posture of the head, weakness, and flaccid paralysis. At that time, pond water in the breeding facilities was drained for 7 days, but there were still remained water containing sediment of feed and feces. Therefore, botulism was suspected and an experimentation were made to detect C. botulinum in the dead mute swan. Gross post-mortem findings of a mute swan showed jelly-like hemorrhagic contents in the intestine, sands and vegetations in the stomach. C. botulinum was isolated from the liver, small intestine and large intestine samples. Botulism was also confirmed by mouse inoculation test with the organ samples. With PCR, a gene encoding C. botulinum type C toxin was detected for the several organs of the mute swan died. These results suggested that death of mute swan was caused by C. botulinum type C.

Gonadal Changes during the Annual Reproductive Cycle of the Ascidian Halocynthia aurantium (Pallas)

  • Lee, Wang Jong;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.299-303
    • /
    • 2021
  • The ascidian Halocynthia aurantium (sea peach), a marine invertebrate, belongs to the same genus of the phylum Chordata along with the ascidian Halocynthia roretzi (sea pineapple), which is one of the model animals in the field of developmental biology. The characteristics of development and reproduction of H. aurantium are not yet known in detail. In order to find out the spawning period of H. aurantium, we investigated development of the gonads during the annual reproductive cycle. Testis and ovary were both in the bisexual gonads (ovotestes) of H. aurantium, which is a hermaphrodite like H. roretzi. In H. aurantium, the right gonad was longer and slightly larger than the left gonad throughout the year. In each gonad, the number of the testis gonoducts was slightly higher than that of the ovary gonoducts. These features were similarly observed in H. roretzi. However, the number of the testis gonoducts and the ovary gonoducts in each gonad of H. aurantium was about half that of H. roretzi. The gonads of H. aurantium contracted during the winter and summer seasons. The gonads decreased to the smallest size around February, and then started to increase again in March. The gonads were most developed in September of the year. Therefore, it is estimated that the spawning of H. aurantium begins around this period.

Analyses of Middle School Students' Thoughts Causing Common Mistakes on Animal Classification (중학생의 동물 분류에서 오류 원인이 되는 사고 내용 분석)

  • Gim, Wn Hwa;Hwang, Ui Wook;Kim, Yong-Jin
    • Journal of Science Education
    • /
    • v.36 no.1
    • /
    • pp.153-165
    • /
    • 2012
  • This study investigated the frequent mistakes and the causes of the alternative conceptions in the animal classification by using the questionnaire and interview with the middle school students (N=300). As results, some students have difficulties classifying suggested animals into vertebrates or invertebrates : snakes (31.7%), shrimps (28.3%), turtles (25.6%), frogs (24.7%), and starfish (10.7%) in order of precedence. These errors seemed to be caused by intuitive thinking over characteristics of physical motions and appearance of suggested animals, wrong inference from comparing to features of familiar animals and the lack of observation experience of the vertebrate backbone. Furthermore, the results showed that relatively many students made a mistake classifying subgroup members of vertebrates such as classifying salamanders into the class Reptilia (45.3%) and turtles into Amphibia (40.3%). It is likely that those errors are affected by ambiguousness of classification terminology (e.g. the term of Amphibia) and weak ability in relating the physiological and ecological feature to standard of classification feature. In addition, sociocultural factors could influence animal classification as 'bat in birds', 'whale in fish, and 'penguin in mammals'. The present study implied that teaching and learning animal classification may require an appropriate guide focused on activities to explore major characteristics used for the animal classification standard through providing more chances of animal observation rather than the cramming method of learning induced by technical memorizing.

  • PDF

Animal Models for Echinostoma malayanum Infection: Worm Recovery and Some Pathology

  • Songsri, Jiraporn;Aukkanimart, Ratchadawan;Boonmars, Thidarut;Ratanasuwan, Panaratana;Laummaunwai, Porntip;Sriraj, Pranee;Sripan, Panupan
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • Echinostomes are intestinal trematodes that infect a wide range of vertebrate hosts, including humans, in their adult stage and also parasitize numerous invertebrate and cold-blooded vertebrate hosts in their larval stages. The purpose of this study was to compare Echinostoma malayanum parasite growth, including worm recovery, body size of adult worms, eggs per worm, eggs per gram of feces, and pathological changes in the small intestine of experimental animals. In this study, 6-8-week-old male hamsters, rats, mice, and gerbils were infected with echinostome metacercariae and then sacrificed at day 60 post-infection. The small intestine and feces of each infected animal were collected and then processed for analysis. The results showed that worm recovery, eggs per worm, and eggs per gram of feces from all infected hamsters were higher compared with infected rats and mice. However, in infected gerbils, no parasites were observed in the small intestine, and there were no parasite eggs in the feces. The volume of eggs per gram of feces and eggs per worm were related to parasite size. The results of histopathological changes in the small intestine of infected groups showed abnormal villi and goblet cells, as evidenced by short villi and an increase in the number and size of goblet cells compared with the normal control group.

Food Component Characterization and Efficient Use of Jellyfish (해파리의 식품성분 특성과 이의 유효 이용)

  • Lim, Chi-Won;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.5
    • /
    • pp.459-473
    • /
    • 2014
  • The recent mass appearances of jellyfish in Korea have caused economic and social damage, as they plague swimmers and fishermen. However, jellyfish have high economic and nutritional value, and contain low levels of calories and hydrolysates. Thus, jellyfish are a natural, healthy food that can improve high blood pressure, bronchitis, and a multitude of other diseases. Here, we present research on the ecology, classification, bloom, damage caused, food component characterization, and tissues of jellyfish, with the aim of facilitating further study. Research on use of jellyfish as salted products, and for collagen and qniumucin would also be valuable. A jellyfish body is classified into three parts: the body, termed the umbrella; the oral arm; and the tentacle. Jellyfish are planktonic marine members of a group of invertebrate animals comprising the classes Schypozoa (phylum Cnidaria) and Cuboza. In Korea in 2012, jellyfish damage resulted in decreases of annual catch and commercial value estimated at 177 and 141 billion won, respectively. Because concentrations of heavy metals are below the safety limits for seafood, dried jellyfish appear to be safe raw materials for food. The proximate compositions of Nemopilema nomurai and Aurelia aurita were 97.1% and 96.5% moisture, 0.9% and 1.2% crude proteins, undetected and 0.1% crude lipids, and 1.7% and 1.8% ash, respectively. According to their total contents of essential, total, and non-essential amino acids, jellyfish gonads were deemed good-quality protein. Because the major functional components of jellyfish are collagen and qniumucin, jellyfish can be used salted, or these components of healthy diets can be extracted from them. For more effective use of jellyfish, unit costs should be decreased and safety guaranteed. Additionally, dehydrators attached to conveyor belts should be developed. Since jellyfish can be used throughout the year, they should be listed in the Korean Food Standards Codex as a food source.

Zonation of the Exposed Sandy Beach Macrofauna in Okjukpo, Taechongdo, Korea (황해 대청도 옥죽포의 외해로 노출된 모래갯벌에 서식하는 대형저서동물의 대상분포)

  • Yoon, Sang-Pil;Hong, Jae-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.146-156
    • /
    • 2000
  • Zonation pattern of macro-invertebrate community structure was examined from Okjukpo sandy beach, Taechongdo, Korea. Macrofauna were collected in June 1998 using a can corer from ten stations along one transect. Mean grain size ranged from 1.97 to 2.23${\phi}$ and sediment organic contents ranged from 0.52 to 1.02%. A total of benthic macro-invertebrates comprised 25 species, providing 10,705 individuals and 89.13 g wet weight in biomass. Peracaridean crustaceans such as amphipods and isopods are the most prominant components in this exposed sandy beach. The dominant species were Eohaustorius setulosus (33%), Excirolana chiltoni (26%), Haustorioides koreanus (12%), Platorchestia crassicornis (8%), and Cycladicama cumingii (6%). The zonation patterns by these animals were very similar to those noted by Dahl(1952) and Jo(1990). They are divided into three faunal zones: 1) subterrestrial fringe dominated by a talitrid amphipod Platorchestia crassicornis, 2) midlittoral zone by a cirolanid isopod Excirolana chiltoni, 3) sublittoral fringe by more diverse amphipods communities.

  • PDF

Aquatic Toxicities of Major Antimicrobial and Anthelmintic Veterinary Pharmaceuticals and their Potential Ecological Risks

  • Oh, Su-Gene;Kim, Jung-Kon;Park, So-Young;Lee, Min-Jung;Choi, Kyung-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.06a
    • /
    • pp.173-177
    • /
    • 2004
  • The acute toxicities of two major anti-pathogenic veterinary medicines, i.e., ciprofloxacin and enrofloxacin, and six benzimidazole anthelmintics, i.e., albendazole, thiabendazole, flubendazole, febantel, fenbendazole, and oxfendazole, were evaluated with a marine bacterium, Vibrio fischeri, and invertebrate Daphnia magna. These veterinary medical products have been widely used for farm animals, but their impact on aquatic fauna has seldom been investigated. In general, daphnids responded as much as 3 orders of magnitude more sensitively to the tested pharmaceuticals than the microbes. For Daphnia, the most toxic product among the tested anthelmintics was fenbendazole, followed by flubendazole > albendazole ${\approx}$ febantel > thiabendazole > oxfendazole. Daphnids' EC50 values obtained from 48 to 96 hrs of fenbendazole exposure ranged from 2.7 to 6.3 ug/L. The mixture toxicity of the test pharmaceuticals was generally additive in nature and was well predicted by a concentration addition model. Using the predicted no effect concentrations (PNECs) of the benzimidazole derivatives estimated from this study, and predicted environmental concentrations (PECs) of these pharmaceuticals, the risk quotients of each anthelmintics were calculated. Most of the test anthelmintic compounds resulted in risk quotients greater than 1. Especially, risk quotient for fenbendazole was 2,791, which strongly indicates this compound might cause severe ecological consequences, should no future action be taken. This study is the first report on the aquatic toxicities and potential ecological risk of major anthelmintic and antimicrobial veterinary products in Korea. The result of this study provides information necessary for conducting more detailed ecological risk assessment of pharmaceutical products in ambient water and guiding proper management decision.

  • PDF

Ultrastructure and Filtrating Function of the Ciliated Epithelial Cells of Foregut in Urechis unicinctus (개불(Urechis unicinctus) 전장 섬모 상피세포의 미세구조와 여과기능)

  • Shin, Kil-Sang;Lee, Sun-Hee
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.435-446
    • /
    • 1998
  • It is suggested that Urechis unicinctus is a filler feeder as like many tide and watery invertebrates which filtrate food materials by ciliary movement. However, the structure of the filter is not yet known in U. unicinctus, nor the filtering mechanism is not well understood. This study reveals ciliated epithelial cells in the foregut and the features of the cilia are good accord with that of known filtrating apparatus of other tide animals. This may implies that the foregut is in function of filtration and the food materials are filtrated by the ciliary movement. With the observation of the filtrating apparatus in the foregut, the intestine of U. unicinctus can be functionally compartmented into 3 parts. These are already known midgut and hindgut in function of digestion and respiration respectively, and the foregut in function of filtrating apparatus for foods. The filtrating apparatus of U. unicinctus is composed of the pseudostratified columnar epithelial cells with numerous cilia. The cilia are well differentiated kinocilia with the typical microtubule pattern, kinetosome and cilia roots. There are two kinds of striated cilia roots, the main root and the accessory root. The main root is extended perpendicularly from the cell surface to basement membrane and the short accessory root is branched with an acute angle of about $80^{\circ}$ from the main root at level of basal plate of the kinetosome. The spacial approaches of the main root with the large fused form of mitochondria is one of the characteristic features which might be in structural consideration an intimate association between energy source and energy mass consuming cell organelles.

  • PDF

Nutritional composition of various insects and potential uses as alternative protein sources in animal diets

  • Shah, Assar Ali;Totakul, Pajaree;Matra, Maharach;Cherdthong, Anusorn;Hanboonsong, Yupa;Wanapat, Metha
    • Animal Bioscience
    • /
    • v.35 no.2_spc
    • /
    • pp.317-331
    • /
    • 2022
  • The aim of the present investigation is to determine the nutritional composition of various insects and their potential uses as alternative protein sources in animal diets. The feeding industry requires production systems that use accessible resources, such as feed resources, and concentrates on the potential impacts on production yield and nutritional quality. Invertebrate insects, such as black soldier flies, grasshoppers, mealworms, housefly larvae, and crickets, have been used as human food and as feed for nonruminants and aqua culture while for ruminants their use has been limited. Insects can be mass-produced, participating in a circular economy that minimizes or eliminates food- and feed-waste through bioconversion. Although the model for formula-scale production of insects as feed for domestic animals has been explored for a number of years, significant production and transformation to being a conventional protein resource remains to be deeply investigated. This review will focus on the nutritional composition of various insects and their potential use as alternative protein sources, as well as their potential use to promote and support sustainable animal production. Furthermore, nutritional compositions, such as high protein, lauric acid omega 6, and omega 3, and bioactive compounds, such as chitin, are of great potential use for animal feeding.

Assessment of the Impacts of 'Sea Prince' Oil Spill on the Rocky Intertidal Macrobenthos Community (암반조간대 대형저서동물군집에 대한 씨프린스호 유류 유출사고 영향 평가)

  • Shin, Hyun-Chool;Lee, Jung-Ho;Lim, Kyeong-Hun;Yoon, Seong-Myeoung;Koh, Chul-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.159-169
    • /
    • 2008
  • This study was aimed to classify the intertidal macrozoobenthic community status after 2 years of Sea Prince oil spill, and oil spill effects along oil spreading track from heavily impacted to unaffected reference site. Field sampling was initiated in late February and continued through November 1998 seasonally, after 2.5 years of oil spill. 7 rocky sampling sites were selected among coastal regions coated and/or affected by the Sea Prince spilled oil. Identified species was 158 species, 65 family, 24 order, 9 class, 5 phylum. Mollusca was the dominant faunal group comprising 100 species (63.3%), and followed by 38 species of Crustacea (24.1%), 12 species of Echinodermata (7.6%), 5 species of Porifera (3.2%), and 3 species of Cnidaria (1.9%). On Dugpo of Sori Island, the fewest species was collected from 28 species to 35 species seasonally among sampling stations. But far away Dugpo toward Gamak Bay, the number of species increased, collecting the maximum on Sohwoenggan Island. At the wreck site of Sori Island, especially the species number of attached animals such as poriferans and anthozoans was very low compared to another site. The density and biomass on the higher tidal zone increased toward the low affected sites, but biomass on middle tidal zone decreased. The invertebrate biomass of study area was dependent on the sessile animals. The major dominant species were small-sized barnacles, Chthmallus challengeri, periwinkles, Littorina brevicula, mussels, Septifer virgatus, and so on. The biomass of C. challengeri and L. brevicula on the higher tidal zone was highest in the wreck site of Sori Island and decreased further and further. However, mussels on the middle tidal zone showed the inverse trends because of the larger individual size of mussel inhabited in Sori Island than those of another sites. As a result of community analysis, the effect of oil spill was not found distinctly. Several ecological indices and cluster analysis did not show the meaningful variation with oil track despite of the conspicuous differences among tidal heights. These indicate that the macrozoobenthic community level of oil spreaded zone recovered in some degree after the Sea Prince oil spill accident, but population or individual levels of dominant sessile animals took more recovery times.