• Title/Summary/Keyword: Invertase Isozymes

Search Result 5, Processing Time 0.019 seconds

Comparative Studies of Invertase Isozymes Produced by Rhodotorula glutinis K-24 (Rhodotorula glutinis K-24가 생산하는 Invertase Isozymes군에 관한 비교 연구)

  • Lee, Tae-Ho;Kim, Chul;Lee, Sang-Ok
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 1989
  • Rhodotorula glutinis K-24 was found to produce internal, cell wall bound, and external invertase. Internal invertase was purified by column chromatographies on DEAE-Sephadex A-50, Sp-sephadex C-50, gel filtration on Sephadex G-200 and isoelectric focusing. Cell wall bound invertase was partially purified by the following procedures; column chromatography on DEAE-Sephadex A-50 and gel filtration on Sephadex G-100. Optimum pH and temperature for enzymatic activities of internal and cell wall bound invertase were pH 3.0 and 6$0^{\circ}C$, respectively. Both enzymes were inhibited by HgC1$_2$, AgNO$_3$, MnSO$_4$, and sodium dodecylsulfate. The molecular weights of internal and cell wall bound invertases were estimated to be 310,000 and 61,000, respectively. Other physicochemical properties of the both enzymes were similar.

  • PDF

The Effect of Plant Hormones and Light Quality on the Invertase Activity in Maize (Zea mays L.) and Mung Bean (Phaseolus radiatus L.) (옥수수와 녹두의 Invertase Isozymes 활성에 미치는 식물호르몬 및 광선의 효과)

  • Lee, Lee,Dong-Hee;Hong, Hong,Jung-Hee;Kim, Yeong-Sang
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.21-21
    • /
    • 1995
  • The effects of plant hormones (NAA, $GA_3$ and BA) and light qualities (white, red, green and blue light) on the changes of reducing sugar contents and invertase isozyme activities in leaves of maize (Zea mars L.) and mung bean (Phseolw radiatus L.) seedlings were investigated. NAA accelerated the increase of reducing sugar contents and invertase isozyme activities, on the contrary, $GA_3$ had little effect in the accumulation of reducing sugar and in the increase of enzyme activities from the leaves of maize and mung bean seedlings. On the other hand, BA accelerated an increase in the activities of the invertase isozyme from the leaves of mung bean seedlings whereas it had little effect in the increase of the enzyme activities from those of maize seedlings. The accumulation of reducing sugar in leaves of both seedlings was promoted by red light irradiation compared to white light irradiation, while the activities of the enzyme were little affected by various light Qualities. In the simultaneous applications of plant hormone and light quality, NAA with white light was very effective in the increase of reducing sugar contents and the enzyme activities from the leaves of mung bean seedlings, whereas NAA application with blue light showed a prominent enhancement in the reducing sugar contents and the enzyme activities from those of maize seedlings. These results suggest that plant hormone, particularly NAA, may be a more important factor than various light Qualities in the stimulation of invertase activity.

The Effect of Plant Hormones and Light Quality on the Invertase Activity in Maize (Zea mays L.) and Mung Bean (Phaseolus radiatus L.) (옥수수와 녹두의 Invertase Isozymes 활성에 미치는 식물호르몬 및 광선의 효과)

  • Lee, Dong-Hee;Hong, Jung-Hee;Kim, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.4 no.4
    • /
    • pp.323-333
    • /
    • 1995
  • The effects of plant hormones (NAA, $GA_3$ and BA) and light qualities (white, red, green and blue light) on the changes of reducing sugar contents and invertase isozyme activities in leaves of maize (Zea mars L.) and mung bean (Phseolw radiatus L.) seedlings were investigated. NAA accelerated the increase of reducing sugar contents and invertase isozyme activities, on the contrary, $GA_3$ had little effect in the accumulation of reducing sugar and in the increase of enzyme activities from the leaves of maize and mung bean seedlings. On the other hand, BA accelerated an increase in the activities of the invertase isozyme from the leaves of mung bean seedlings whereas it had little effect in the increase of the enzyme activities from those of maize seedlings. The accumulation of reducing sugar in leaves of both seedlings was promoted by red light irradiation compared to white light irradiation, while the activities of the enzyme were little affected by various light Qualities. In the simultaneous applications of plant hormone and light quality, NAA with white light was very effective in the increase of reducing sugar contents and the enzyme activities from the leaves of mung bean seedlings, whereas NAA application with blue light showed a prominent enhancement in the reducing sugar contents and the enzyme activities from those of maize seedlings. These results suggest that plant hormone, particularly NAA, may be a more important factor than various light Qualities in the stimulation of invertase activity.

  • PDF

Purification and Characterization of the External Invertase Constitutively Produced by Rhodotorula glutinis K-24 (Rhodotorula glutinis K-24에 의해 구성적으로 생산되는 세포외 Invertase의 정제 및 특성)

  • Choi, Mi-Jung;Kim, Chul;Lee, Sang-Ok;Lee, Tae-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.368-375
    • /
    • 1990
  • Rhodoto& ghtbth~ K-24 was found to produce external invertase in addition to internal and cell wall bound invertase. External invertase was purified to an electrophoretically homogeneous state and partitally characterized and was compared with internal and cell wall bound invertase of which procedures for purification and characterization were reported previously. The enzyme was purified by ethanol precipitation, column chromatographies on DEAE-Sephadex A-50 and SP-Sephadex C-50, and gel filtration on Sephadex G-100. The molecular weight and subunit molecular weight of external invertasGwere estimated to be 220,000 and 100,000, respectively. The isoelectric point of the enzyme was about pH 6.0. The optimum pH and temperature for enzyme activity were pH 4.0 and $60^{\circ}C$, respectively. The enzyme remained stable at the wide range, from pH 3.0 to 11.0 and stable up to $40^{\circ}C$, but was inactivated at temperatures above that. $HgC_12, AgN0_3, MnS0_4$, SDS and p-CMB inhibited the enzyme activity. The $K_m$ value of the enzyme for sucrose was $1.0\times 10^{-2}$M. From these results, the three isozymes from Rh. glutinis K-24 seem to have the similar enzymatic properties, but to differ in molecular and subunit weights.

  • PDF

Characterization of Carbohydrate Metabolism during Dark-Induced Senescence

  • Kim, Young-Sang;Chang, Ji-Young;Lee, Dong-Hee
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.14-21
    • /
    • 2001
  • To investigate the changes of carbohydrate metabolism in the senescing leaves of Zea mays during dark-induced senescence, the changes in the contents of reducing sugar, sucrose and starch as well as the activities of sucrose synthase, three isozymes of invertase, and ${\alpha}$-amylase were measured. In the senescing leaves, the content of reducing sugars temporarily increased at 4 d and rapidly decreased thereafter, whereas sucrose contents gradually decreased thereafter, whereas sucrose contents gradually decreased until 3 d of senscence and significantly decreased thereafter. The activities of intracellular invertases such as soluble acid and alkaline formed gradually enhanced until 4 d of leaf senescence and significantly declined thereafter. The extracellular invertase activity showed no significant changes during leaf senescence. The deactivation of sucrose synthase was observed within 3 d of leaf senscence. On the other hand, the starch contents gradually declined during 2 d of leaf senescence, and showed a temporary increase at 3 d, which is similar to the pattern of sucrose synthase activity., These results imply that sucrose in the senescing leaves. The major enzymes which correlated to the breakdown of sucrose during dark-induced senescence were soluble acid and alkaline invertases, not sucrose and ABA accelerated leaf senescence by inducing the accumulation of reducing sugar. These result, therefore, that leaf senescence may be mediated by the temporary quantitative changes of reducing sugar induced by the activation of intracellualr inveertases.

  • PDF