• Title/Summary/Keyword: Inversion event

Search Result 39, Processing Time 0.023 seconds

Source Parameters for the 9 December 2000 $M_L$ 3.7 Offshore Yeongdeok Earthquake, South Korea (2000년 12월 9일 $M_L$ 3.7 영덕 해역 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • An earthquake with local magnitude $(M_L)$ 3.7 on December 9, 2000 occurred offshore Yeongdeok area, South Korea. In case of applying Chang and Baag (2006) crustal velocity model, the epicenter is $36.4462^{\circ}N\;and\;129.9789^{\circ}E$, which belongs to the inside of the Korean Peninsula Continental Shelf. Although we use the modified model reducing crustal thickness of Chang and Baag (2006) model by 5 km considering the transition from continental crust to oceanic crust in the East Sea, the epicenter was little changed. We carried out the waveform inversion analysis to estimate focal depth and focal mechanism of this event. The focal depth is estimated to be 11 ~ 12 km. The seismic moment is estimated to be $1.0{\times}10^{15}N{\cdot}m$, and this value corresponds to the moment magnitude $(M_W)$ 3.9. The offshore Yeongdeok event including May 29, 2004 offshore Uljin one show typical thrust faulting, and the direction of P-axis is ESE-WNW. The moment magnitude estimated by the spectral analysis is 4.0, which is similar to that by the waveform inversion analysis. Average stress drop is estimated to be 3.4 MPa.

Geometric Analysis of Minor Faults and Paleostress Reconstruction around the Dongnae Fault (동래단층 주변 소단층의 분포 특성과 고응력장 복원)

  • 조용찬;장태우;이정모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.41-52
    • /
    • 1998
  • The Dongnae Fault in the southeastern part of the Korean Peninsular is not a single fault but a complex fault zone composed of numerous minor faults. In order to deduce the paleostress tensor evolving the Dongnae Fault, we measured 329 faults in outcrops around the fault zone and analyzed the geometries of them. Most of them are steeply dipping(>65˚) and fall into three groups striking N10E, N30E and N70E. More than one half of them show the rakes less than 30˚ Paleostress tensor analysis using the collected fault data has been conducted with the Angelier's direct inversion method and the Choi's method. As result, four different principal paleostress axes each of which subtends an independent tectonic event are found. They are; (1) NNE-SSW compression and ESE-WNW extension (Event I), (2) NNE-SSW extension (Event II), (3) ESE-WNW extension (Event III) and (4) ENE-WSW compression and NNW-SSE extension (Event IV) in chronology. Therefore, the tectonic movement around the Dongnae Fault was firstly governed by strike-slip faulting related to Event I. Afterward, normal faults were formed by Event II and Event III. Finally, the dextral strike-slip faults along the major trace of the Dongnae Fault were formed in NNE direction related to Event IV.

  • PDF

Characteristics of a Heavy Rainfall Event in Yeongdong Region on 6 August, 2018 (2018년 8월 6일 발생한 영동지역 집중호우 사례에 대한 특성 연구)

  • Ahn, Bo-Young;Shim, Jae-Kwan;Kim, KyuRang;Kim, Seung-Bum
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.222-237
    • /
    • 2020
  • A heavy (93 mm hr-1) rainfall event accompanied by lightning occurred over Gangneung in the Yeongdong region of South Korea on August 6, 2018. This study investigated the underlying mechanism for the heavy rainfall event by using COMS satellite cloud products, surface- and upper-level weather charts, ECMWF reanalysis data, and radiosonde data. The COMS satellite cloud products showed rainfall exceeding 10 mm hr-1, with the lowest cloud-top temperature of approximately -65℃ and high cloud optical thickness of approximately 20-25. The radiosonde data showed the existence of strong vertical wind shear between the upper and lower cloud layers. Furthermore, a strong inversion in the equivalent potential temperature was observed at a pressure altitude of 700 hPa. In addition, there was a highly developed cloud layer at a height of 13 km, corresponding with the vertical analysis of the ECMWF data. This demonstrated the increased atmospheric instability induced by the vertical differences in equivalent potential temperature in the Yeongdong region. Consequently, cold, dry air was trapped within relatively warm, humid air in the upper atmosphere over the East Sea and adjacent Yeongdong region. This caused unstable atmospheric conditions that led to rapidly developing convective clouds and heavy rainfall over Gangneung.

An adverse event following 2009 H1N1 influenza vaccination: a case of acute disseminated encephalomyelitis

  • Lee, Sang-Teak;Choe, Young-June;Moon, Won-Jin;Choi, Jin-Woo;Lee, Ran
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.10
    • /
    • pp.422-424
    • /
    • 2011
  • Acute disseminated encephalomyelitis (ADEM) is an inflammatory demyelinating disease of the central nervous system that typically follows an infection or vaccination and has a favorable long-term prognosis. We describe the first reported case of ADEM after vaccination against novel influenza A (H1N1). A previously healthy 34-month-old boy who developed ADEM presented with a seizure and left-sided weakness 5 days after vaccination against novel influenza A (H1N1). Cerebrospinal fluid examination revealed elevated cell counts. T2-weighted images and fluid-attenuated inversion recovery images revealed multiple patchy hyperintense lesions in the frontal and parietal subcortical white matter and the left thalamus. After the administration of intravenous corticosteroid, the patient's clinical symptoms improved and he recovered completely without neurologic sequelae.

A Study for Earthquake Parameter of Odaesan Earthquake (오대산지진(2007/01/20)의 지진원 특성에 관한 연구)

  • Kim, Jun-Kyoung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.673-680
    • /
    • 2007
  • The seismic source parameters of the Odaesan earthquake on 20 January 2007, including focal depth, focal mechanism, magnitude, and source characteristics, are analysed using seismic moment tensor inversion. The Green's function for different 3 crust models representing the southern Korean Peninsula are used. Final results show that the event, considering 6 seismic moment tensor elements, is caused by the typical strike slip fault with nearly NNE strike. The focal depth is estimated to be about 11km and 6 seismic moment tensor elements with 7.2% CLVD value shows typical double couple seismic source. The consistent characteristics of the strike and epicenter of the event with Odaesan fault imply that Odaesan earthquake is mainly caused by movement of the Odaesan fault.

P-wave velocity structure in Southern Korea by using Velest program (Velest를 이용한 남한 지역의 P파 속도구조 분석)

  • 전정수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.49-54
    • /
    • 2000
  • Korea Institute of Geology Mining and Materials(KIGAM) has been operating Korean Earthquake Monitoring System(KEMS) to archive the real-time data stream and to determine event parameters (epicenter origin time and magnitude)by the automatic processing and analyst review. To do this KEMS uses the Vindel Hue's velocity model which was derived from Wonju KSRS data. Because KIGAM now receives the real-time data from many stations including Wonju KSRS Cholwon seismo-acoustic array Uljin Wolsung Youngkwang Taejon Seoul Kimcheon Taegu etc. the proper velocity model should be established around the Korean peninsula, In this study P were velocity structures was derived from VELEST program using 69 events among the 835 events determined by KEMS in 1999 which were recorded by at least 5 stations. General trend of velocity structure was similar to Sang Jo Kim's model but velocity value was low in crust and high in upper mantle. Due to the sensitivity of inversion results to the initial input model the artificial short and blast data might be added.

  • PDF

Revised Geology of the Deokjeok and Soya Islands in the Central-western Korean Peninsula

  • Park, Jeong-Yeong;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.631-643
    • /
    • 2020
  • The central-western Korean Peninsula contains records of an Early Mesozoic collisional event related to the final amalgamation of the East Asian continent. Here, we present a renewed geologic map of the Deokjeok and Soya islands in the central-western Korean Peninsula and its explanatory note. Our geologic map was based on a detailed investigation of the northeastern area of both islands, which is characterized by a complex fault and shear zone system that accommodated the crustal deformation related to the Mesozoic post-collisional orogenic collapse and the subsequent structural inversion. We suggest future directions of study aiming at addressing issues regarding the deformational responses of crust to the Mesozoic tectonic transition and orogenic cycles.

Modeling of SO$_2$ Emissions from Yatagan Power Plant

  • Im, Ulas;Yenigun, Orhan
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.69-72
    • /
    • 2003
  • The meteorological model, CALMET, and its plume dispersion model, CALPUFF, were used in order to simulate the dispersion of $SO_2$ emitted from Yatagan Power Plant and its effect on Yatagan district in the episodic event on December 2 and 3, 2000. It is found that south westerly and light winds and the nighttime surface inversion layers lead to accumulation of pollutants over Yatagan district. The results are compared with the measurements done by Local Environmental Authorities of Mu la. The simulation results indicate that the maximum ground level concentrations were found northeast from the source, which agrees with experimental measurement. On the other hand, the magnitude of results obtained with the model shows some differences compared with experimental measurements.

  • PDF

A Case Study of Tsukuba Tornado in Japan on 6 May 2012

  • Choo, Seonhee;Min, Ki-Hong;Kim, Kyung-Eak;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.39 no.5
    • /
    • pp.403-418
    • /
    • 2018
  • This study conducted synoptic and mesoscale analyses to understand the cause of Japan Tsukuba tornado development, which occurred at 0340 UTC 6 May 2012. Prior to the tornado occurrence, there was a circular jet stream over Japan, and the surface was moist due to overnight precipitation. The circular jet stream brought cold and dry air to the upper-level atmosphere which let strong solar radiation heat the ground with clearing of sky cover. A tornadic supercell developed in the area of potentially unstable atmosphere. Sounding data at Tateno showed a capping inversion at 900 hPa at 0000 UTC 6 May. Strong insolation in early morning hours and removal of the inversion instigated vigorous updraft with rotation due to vertical shear in the upper-level atmosphere. This caused multiple tornadoes to occur from 0220 to 0340 UTC 6 May 2012. When comparing Tateno's climatological temperature and dew-point temperature profile on the day of event, the mid-level atmosphere was moister than typical sounding in the region. This study showed that tornado development in Tsukuba was caused by a combination of (a) topography and potential vorticity anomaly, which increased vorticity over the Kanto Plain; (b) vertical shear, which produced horizontal vortex line; and c) thermal instability, which triggered supercell and tilted the vortex line in the vertical.

Analysis on the source characteristics of three earthquakes nearby the Gyeongju area of the South Korea in 1999 (1999년 경주 인근에서 3차례 발생한 지진들의 지진원 특성 분석)

  • Choi, Ho-Seon;Shim, Taek-Mo
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.509-515
    • /
    • 2009
  • Three earthquakes with local magnitude ($M_L$) greater than 3.0 occurred on April 24, June 2 and September 12 in 1999 nearby the Gyeongju area. Redetermined epicenters were located within the radius of 1 km. We carried out waveform inversion analysis to estimate focal mechanism of June 2 event, and P and S wave polarity and their amplitude ratio analysis to estimate focal mechanisms of April 24 and September 12 events. June 2 and September 12 events had similar fault plane solutions each other. The fault plane solution of April 24 event included those of other 2 events, but its distribution range was relatively broad. Focal mechanisms of those events had a strike slip faulting with a small normal component. P-axes of those events were ENE-WSW which were similar to previous studies on the P-axis of the Korean Peninsula. Considering distances between epicenters, similarities of seismic waves and sameness of polarities of seismic data recorded at common seismic stations, these events might occurred at the same fault. The seismic moment of June 2 event was estimated to be $3.9\;{\times}\;10^{14}\;N{\cdot}m$ and this value corresponded to the moment magnitude ($M_W$) 3.7. The moment magnitude estimated by spectral analysis was 3.8, which was similar to that estimated by waveform inversion analysis. The average stress drop was estimated to be 7.5 MPa. Moment magnitudes of April 24 and September 12 events were estimated to be 3.2 and 3.4 by comparing the spectrum of those events recorded at common single seismic station.