• Title/Summary/Keyword: Inverse system

Search Result 1,397, Processing Time 0.032 seconds

A SPARSE APPROXIMATE INVERSE PRECONDITIONER FOR NONSYMMETRIC POSITIVE DEFINITE MATRICES

  • Salkuyeh, Davod Khojasteh
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1131-1141
    • /
    • 2010
  • We develop an algorithm for computing a sparse approximate inverse for a nonsymmetric positive definite matrix based upon the FFAPINV algorithm. The sparse approximate inverse is computed in the factored form and used to work with some Krylov subspace methods. The preconditioner is breakdown free and, when used in conjunction with Krylov-subspace-based iterative solvers such as the GMRES algorithm, results in reliable solvers. Some numerical experiments are given to show the efficiency of the preconditioner.

The Method of New Robust Inverse Filter Design in 2-Ch Audio System (2채널 오디오 시스템에서 전달계 변동에 강인한 역필터 설계 기법)

  • Park, Byoung-Uk;Kim, Hack-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.185-192
    • /
    • 2008
  • The crosstalk is the most serious problem in playing audio signals with more than two speakers. Usually an inverse filter is employed to remove such a Phenomenon. The LNS method, one of most effective design techniques for an inverse filter, has some advantages such as easy implementation and quick computation. However, the inverse filter designed by the LNS method is not easy to adapt immediately for the delivery system change since the pre-measured impulse response is used to design the filter. In this work, we present an adaptive algorithm for the inverse filter design. With the present algorithm. the inverse filter is initially designed by the LNS methods and continuously adjusted to cope with the delivery system changes. To verify the proposed method. some simulations were carried out and the results confirmed that the performance of the crosstalk calculation can be improved in entire frequency range.

  • PDF

Issues in Control of a Robotic Spatial Augmented Reality System (로보틱 공간증강현실 시스템의 제어의 문제)

  • Lee, Joo-Haeng;Kim, Hyun;Suh, Young-Ho;Kim, Hyung-Sun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.437-448
    • /
    • 2011
  • A robotic spatial augmented reality (RSAR) system combines a robotics technology with a spatial augmented reality system (SAR) where cameras are used to recognize real objects and projectors augment information and user interface directly on the surface of the recognized objects, rather than relying on handheld display devices. Moreover, a robotic module is actively used to discover and utilize the context of users and environments. The control of a RSAR system involves several issues from different technical fields such as classical inverse kinematics of motors where projector-camera pairs are mounted, inverse projection problems to find appropriate internal/external parameters of projectors and cameras, and image warping in graphics pipeline to compensate the kinematic constraints. In this paper, we investigate various control issues related to a RSAR system and propose basic approaches to handle them, specially focused on the prototype RSAR system developed in ETRI.

Pitch Angle Control and Wind Speed Prediction Method Using Inverse Input-Output Relation of a Wind Generation System

  • Hyun, Seung Ho;Wang, Jialong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1040-1048
    • /
    • 2013
  • In this paper, a sensorless pitch angle control method for a wind generation system is suggested. One-step-ahead prediction control law is adopted to control the pitch angle of a wind turbine in order for electric output power to track target values. And it is shown that this control scheme using the inverse dynamics of the controlled system enables us to predict current wind speed without an anemometer, to a considerable precision. The inverse input-output of the controlled system is realized by use of an artificial neural network. The proposed control and wind speed prediction method is applied to a Double-Feed Induction Generation system connected to a simple power system through computer simulation to show its effectiveness. The simulation results demonstrate that the suggested method shows better control performances with less control efforts than a conventional Proportional-Integral controller.

System Realization by Using Inverse Discrete Fourier Transformation for Structural Dynamic Models

  • Kim, Hyeung Y.;W. B. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.289-294
    • /
    • 1998
  • The distributed-parameter structures expressed with the partial differential equations are considered as the infinite-dimensional dynamic system. For implementation of a controller in multivariate systems, it is necessary to derive the state-space reduced order model. By the eigensystem realization algorithm, we can yield tile subspace system with the Markov parameters derived from the measured frequency response function by the inverse discrete Fourier transformation. We also review the necessary conditions for the convergence of the approximation system and the error bounds in terms of the singular values of Markov-parameter matrices. To determine the natural frequencies and modal damping ratios, the modal coordinate transformation is applied to the realization system. The vibration test for a smart structure is performed to provide the records of frequency response functions used in the subspace system realization.

  • PDF

Implementation of a Robust Dynamic Control System for SCARA Robot Using DSPs (DSP를 이용한 SCARA 로봇의 강인한 동적 제어시스템 실현)

  • 이장명;박흥인
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.2
    • /
    • pp.58-69
    • /
    • 1998
  • A contrp; suste, fpr SCARA robot is designed for implememting a robust dynamic control algorithm. this study forcuses on the use of DSPs in the design of joint controllers and interfaces in between the host cotroller and four joint controllers and in between the joint controllers and four servo drives. The mechanical body of SCARA robot and the servo drives are selected from the commercially available ones. The four joint controllers, assigned to each joint one by one, are combined into a common system through a mother board hardwarewise and through the global memeory softwarewise. The mother board is designed to connect joint controllers onto the board through the slots adopting PC/104 bus structures. And, the global memory stores the common data which can be shared by joint controllers and the host computer directly, which virtually combines the whole system into one. To demonstrate the performance and efficienty of the sytem, a robust inverse dynamic algorithm is proposed and implemented for a faster and more precise control. The robust inverse dynamic algorithm is basically derived from an inverse dynamci algorithm and a PID compensator. Based upon the derived dynamic equitions of SCARA robot, the inverse dynamic algorithm is intitially implemented within 0.3 msec of the control cycle in this system. The algoithm is found to be not accurate enough for the high speed and precision tasks due to inherent modelling errors and time-varying factors. Therefore, a variable PID algorithm is combined with the inverse dynamic algorithm to support robustness of control performance. Experimental datfor the proposed algorithm are presented and compared with the result obtained from PID and inverse dynamic algorithm.

  • PDF

A Study for properties of IK system to 3D character animation education (3D 캐릭터 애니메이션 교육을 위한 IK SYSTEM 특성 연구(Bone, Character Studio, CAT을 중심으로))

  • Cho, Hyung-Ik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.519-523
    • /
    • 2011
  • Today, one of the most important reasons that 3D software becomes a core part of the essential tools in the video contents field like the movies, animation, CF, motion graphic, games and etc. is that they can save budget of contents makings and can produce better effects than conventional methods like miniature, matt painting, extra mobilization and etc. and can save time and have the merit that they are not limited in space. In this paper, I analyzed IK(Inverse kinematics) system characteristics for the efficient education of 3D character animation particularly most used of 3D applications which is now supposed to be nearly necessary elements in game, animation, movie and contents. And by analyzing merits and demerits of each tool on Bone, Character studio and Character Animation Toolkit, systems which are most used practically in the various Inverse kinematics tools, I showed the result of analyses about the fact that educating which of the above three Inverse Kinematics tools is helpful and beneficial for the students for the efficient education in the university where should teach much in the limited time

  • PDF

DERIVED CUP PRODUCT AND (STRICTLY) DERIVED GROUPS

  • Lee, Dae-Woong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.791-807
    • /
    • 1998
  • The purpose of this paper is to construct a ring with unity under the derived cup product on the cochain groups of the inverse system and an isomorphism which is useful as the computation of a derived group by deleting the suitable terms in the directed set D. Moreover we apply these results to the K-theory.

  • PDF

Estimation of structure system input force using the inverse fuzzy estimator

  • Lee, Ming-Hui
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.351-365
    • /
    • 2011
  • This study proposes an inverse estimation method for the input forces of a fixed beam structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy logic inference system. By directly synthesizing the robust filter technology with the estimator, this study presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between the tracking capability and the flexibility against noises. The period input of the fixed beam structure system can be effectively estimated by using this method to promote the reliability of the dynamic performance analysis. The simulation results are compared by alternating between the constant and adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method to the fixed beam structure system is successful.