• Title/Summary/Keyword: Inverse square law

Search Result 34, Processing Time 0.018 seconds

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

A Study on Patients Dose and Image Quality according to Source to Image receptor Distance in Abdomen Radiography: comparison of ESD measured and DRLs in other countries (복부일반촬영시 선원과 검출기간의 거리변화에 따른 영상 화질 및 피폭선량에 관한 연구)

  • Jang, Ji-Sung;Choi, Weon-Keun;Jung, Jae-Yon;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.39-46
    • /
    • 2012
  • Purpose : The purpose of this study was to reduce Entrance Surface Dose and maintain image quality by changing Source to Image receptor Distance. And we'd like to compare ESD on this study to DRLs in other contries. Materials and Methods : We used indirect DR system(Definium 8000, General Electric, USA)and phantom(ART-200X, Flukebiomedical, USA),glass dosimeters(GD-352M, Asahi Techno Glass, Japan)for this study. The imagies were obtained throuh 80kVp fixed, and different tube currents using AEC mode in $16{\times}16$(inch) field size and changing Source to Image receptor Distance from 100 cm to 130 cm per 10 cm unit. The phantom with attaching 5 glass dosimeters on abdomonal skin was set at supine and erect position as a anterioposterial projection on detector For measuring Entrance Surface Dose. Image analysis was conducted by histograms of Image J(1.46r) which was given from National Institutes of Health(NIH). Results : Due to inverse square law of distance, the tube currents were increasing 42.6 % in supine position and 32.6 % in erect position according to the change of Source to Image receptor Distance. While Entrance Surface Doses were rapidly decreasing 14.2 % in supine position and 29.4 % in erect position according to the change of Source to Image receptor Distance. As the results of histogram using Image J, pixel mean values from 100 cm to 110 cm, 120 cm and 130 cm were decreasing each 1.4%, 2.5%, 2.7%, 4.5%, 2.2 %, 5.8 % in supine, erect position. While standard deviations from 100 cm to 110 cm, 120 cm and 130 cm were increasing each 1.4 %, 2.5 %, 2.5 %, 4.0 %, 2.0 %, 4.9 % Consequently, there are no significant differences in abdomen images taken. Conclusion: As the results described above, we strongly recommend using long Sourceto Image receptor Distance than 100cm that we have been using. So, we should deliver less Entrance Surface Dose to the patients while maintaining image quality in abdomen radiography.

  • PDF

The Study on Applicability of Manufactured Lead(II) Iodide Dosimeter for Dose Measurement in Brachytherapy (방사선근접치료 분야의 선량 측정을 위해 제조된 Lead(II) Iodide 선량계의 적용가능성 연구)

  • Yang, Seung-Woo;Han, Moo-Jae;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.6
    • /
    • pp.789-794
    • /
    • 2021
  • Brachytherapy is a treatment in which radioactive isotopes are placed inside the body to intensively irradiate the tumor with radiation. Because brachytherapy uses a radioisotope source with a high dose rate, it is very important to know the exact location and dose of the source. However, in clinical practice, it is evaluated inaccurately with the naked eye through rulers and autoradiographs. Therefore, in this study, a dosimeter that can be used for brachytherapy was developed using a lead(II) iodide (PbI2) material, and the applicability was evaluated by analyzing the reproducibility, linearity, and PID items. As a result of reproducibility evaluation, the RSD value was 1.41%, satisfying the evaluation criteria of 1.5%. As a result of the linearity evaluation, the R2 value was 0.9993, which satisfies the evaluation criterion of 0.9990. As a result of PID evaluation, it showed only a difference of 0.06 cm compared with the theoretical value of the inverse square law of distance at the 50% dose reduction point. The dosimeter manufactured in this experiment shows results that satisfy the standard in all evaluations, so it is judged that the possibility of applying the dosimeter in the radiation brachytherapy area is sufficient.

Evaluation of Spatial Dose Rate in Working Environment during Non-Destructive Testing using Radioactive Isotopes (방사성동위원소를 이용한 비파괴 검사 시 작업환경 내 공간선량률 평가)

  • Cho, Yong-In;Kim, Jung-Hoon;Bae, Sang-Il
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.373-379
    • /
    • 2022
  • The radiation source used for non-destructive testing have permeability and cause a scattered radiation through collisions of surrounding materials, which causes changes in the surrounding spatial dose. Therefore, this study attempted to evaluate and analyze the distribution of spatial dose by source in the working environment during the non-destructive test using monte carlo simulation. In this study, Using FLUKA, a simulation code, simulates 60Co, 192Ir, and 75Se source used in non-destructive testing, The reliability of the source term was secured by comparing the calculated dose rate with the data of the Health and Physics Association. After that, a non-destructive test in the radiation safety facility(RT-room) was designed to evaluate the spatial dose according to the distance from the source. As a result of the spatial dose evaluation, 75Se source showed the lowest dose distribution in the frontal position and 60Co source showed a dose rate of about 15 times higher than that of 75Se and about 2 times higher than that of 192Ir. In addition, the spatial dose according to the distance tends to decrease according to the distance inverse square law as the distance from the source increases. Exceptionally, 60Co, 192Ir, and 75Se sources confirmed a slight increase within 2 m of position. Based on the results of this study, it is believed that it will be used as supplementary data for safety management of workers in radiation safety facilities during non-destructive testing using radioactive isotopes.