• Title/Summary/Keyword: Inverse analysis method

Search Result 782, Processing Time 0.03 seconds

Design of an Optimal Adaptive Filter for the Cancellation of M-wave in the EMG Controlled Functional Electrical Stimulation for Paralyzed Individuals (마비환자의 근전도제에기능적전기자극을 위한 M-wave 제거용 최적적응필터 설계)

  • Yeom Hojoon;Park Youngcheol;Lee Younghee;Yoon Youngro;Shin Taemin;Yoon Hyoungro
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.479-487
    • /
    • 2004
  • Biopotential signals have been used as command in systems using electrical stimulation of motor nerves to restore movement after an injury to the central nervous system (CNS). In order to use the voluntary EMG (electromyography) among the biopotentials as a control signal for the electrical stimulation of the same muscle for CNS injury patients, it is necessary to remove M-wave of having high magnitude from raw data. We designed an optimal filter for removing the M-wave and preserving the voluntary EMG and showed that the optimal filter is eigen filter. We also proved that the previous method using the prediction error filter(PEF) is a suboptimal filtering in the sense of preserving the voluntary EMG. On basis of the data obtained from a model for M-wave and voluntary EMG and from actual CNS injury patients, with false-positive rate analysis, the proposed adaptive filter showed a very promising performance in comparison with previous method.

Analysis of the applicability of parameter estimation methods for a transient storage model (저장대모형의 매개변수 산정을 위한 최적화 기법의 적합성 분석)

  • Noh, Hyoseob;Baek, Donghae;Seo, Il Won
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.681-695
    • /
    • 2019
  • A Transient Storage Model (TSM) is one of the most widely used model accounting for complex solute transport in natural river to understanding natural river properties with four TSM key parameters. The TSM parameters are estimated via inverse modeling. Parameter estimation of the TSM is carried out by solving optimization problem about finding best fitted simulation curve with measured curve obtained from tracer test. Several studies have reported uncertainty in parameter estimation from non-convexity of the problem. In this study, we assessed best combination of optimization method and objective function for TSM parameter estimation using Cheong-mi Creek tracer test data. In order to find best optimization setting guaranteeing convergence and speed, Evolutionary Algorithm (EA) based global optimization methods, such as CCE of SCE-UA and MCCE of SP-UCI, and error based objective functions were compared, using Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL). Overall results showed that multi-EA SC-SAHEL with Percent Mean Squared Error (PMSE) objective function is the best optimization setting which is fastest and stable method in convergence.

A Feasibility Study in Forestry Crane-Tip Control Based on Kinematics Model (1): The RR Manipulator (기구학적 모델 기반 임업용 크레인 팁 제어방안에 관한 연구(1): RR 매니퓰레이터)

  • Kim, Ki-Duck;Shin, Beom-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.2
    • /
    • pp.287-301
    • /
    • 2022
  • This study aims to propose a crane-tip control method to intuitively control the end-effector vertically or horizontally for improving the crane work efficiency and to confirm the control performance. To verify the control performance based on experimental variables, a laboratory-scale crane was manufactured using an electric cylinder. Through a forward and reverse kinematics analysis, the crane was configured to output the position coordinates of the current crane-tip and the joint angle at each target point. Furthermore, a method of generating waypoints was used, and a dead band using lateral boundary offset (LBO) was set. Appropriate parameters were selected using bang-bang control, which confirmed that the number of waypoints and LBO radius were associated with positioning error, and the cylinder speed was related to the lead time. With increased number of waypoints and decreased LBO radius, the positioning error and the lead time also decreased as the cylinder speed decreased. Using the proportional control, when the cylinder velocity was changed at every control cycle, the lead time was greatly reduced; however, the actual control pattern was controlled by repeating over and undershoot in a large range. Therefore, proportional control was performed by additionally applying velocity gain that can relatively change the speed of each cylinder. Since the control performed with in a range of 10 mm, it was verified th at th e crane-tip control can be ach ieved with only th e proportional control to which the velocity gain was applied in a control cycle of 20 ms.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Evaluation of Fracture Toughness of Copper Thin Films by Combining Numerical Analyses and Experimental Tests (해석과 실험을 결합한 구리 박막의 파괴인성 평가)

  • Kim, Hyun-Gyu;Oh, Se-Young;Kim, Kwang-Soo;Lee, Haeng-Soo;Kim, Seong-Woong;Kim, Jae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.233-239
    • /
    • 2013
  • In this paper, a method of combining numerical analyses and experimental tests is used to evaluate fracture toughness of copper thin films of $15{\mu}m$ thickness. Far-field loadings of a global-local finite element model are inversely estimated by matching crack opening profiles in experiments with numerical results. The fracture toughness is then evaluated using the J-integral for cracks in thin films under far-field loadings. In experiments, Cu thin films attached to Aluminum sheets are loaded indirectly, and crack opening profiles are observed by microscope camera. Stress versus strain curves of Cu thin films are obtained through micro-tensile tests, and the grain size of Cu thin films is observed by TEM analysis. The results show that the fracture toughness of Cu thin films with $500nm{\sim}1{\mu}m$ sized grains is $6,962J/m^2$.

Biomechanical Analysisz of Varying Backpack Loads on the Lower Limb Moving during Downhill Walking (내림 경사로 보행시 배낭 무게에 따른 하지 움직임의 운동역학적 분석)

  • Chae, Woen-Sik;Lee, Haeng-Seob;Jung, Jae-Hu;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • Objective : The purpose of this study was to conduct biomechanical analysis of varying backpack loads on the lower limb movements during downhill walking over $-20^{\circ}$ ramp. Method : Thirteen male university students (age: $23.5{\pm}2.1yrs$, height: $175.7{\pm}4.6cm$, weight: $651.9{\pm}55.5N$) who have no musculoskeletal disorder were recruited as the subjects. Each subject walked over $20^{\circ}$ ramp with four different backpack weights (0%, 10%, 20% and 30% of body weight) in random order at a speed of $1.0{\pm}0.1m/s$. Five digital camcorders and two force plates were used to obtain 3-d data and kinetics of the lower extremity. For each trial being analyzed, five critical instants were identified from the video recordings. Ground reaction force, loading rate, decay rate, and resultant joint moment of the ankle and the knee were determined by the inverse dynamics analysis. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among four different backpack weight conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results : The results of this study showed that the medio-lateral GRFs at RHC in 20% and 30% body weight were significantly greater than the corresponding value in 0% of body weight. A consistent increase in the vertical GRFs as backpack loads increased was observed. The valgus joint movement of the knee at RTO in 30% body weight was significantly greater than the corresponding values in 0% and 10% body weight. The increased valgus moment of 30% body weight observed in this phase was associated with decelerating and stabilizing effects on the knee joint. The results also showed that the extension and valgus joint moments of the knee were systematically affected by the backpack load during downhill walking. Conclusion : Since downhill walking while carrying heavy external loads in a backpack may lead to excessive knee joint moment, damage can occur to the joint structures such as joint capsule and ligaments. Therefore, excessive repetitions of downhill walking should be avoided if the lower extremity is subjected to abnormally high levels of load over an extended period of time.

A Red Ginseng Internal Measurement System Using Back-Projection (Back-Projection을 활용한 홍삼 내부 측정 시스템)

  • Park, Jaeyoung;Lee, Sangjoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.10
    • /
    • pp.377-382
    • /
    • 2018
  • This study deals with internal state and tissue density analysis methods for red ginseng grade determination. For internal measurement of red ginseng, there have been various studies on nondestructive testing methods since the 1990s, It was difficult to grasp the most important inner hole and inside whites in the grading. So in this study, we developed a closed capturing device for infra-red illumination environment, and developed an internal measurement system that can detect the presence and diameter of inner hole and inside whites. Made devices consisted of infrared lights with a high transmission rate of red ginseng in 920 nanometer wave band, a infra-red camera and a Y axis actuator with a red ginseng automatically controlled focus on the camera. The proposed algorithm performs an auto-focus system on the Y-axis actuator to automatically adjust the sharp focus of the object according to the size and thickness. Then red ginseng is rotated $360^{\circ}$ at $1^{\circ}$ intervals and 360 total images are acquired, and reconstructed as a sinogram through Radon transform and Back-projection algorithm was performed to acquire internal images of red ginseng. As a result of the algorithm, it was possible to acquire internal cross-sectional image regardless of the thickness and shape of red ginseng. In the future, if more than 10,000 different shapes and sizes of red ginseng internal cross-sectional image are acquired and the classification criterion is applied, it can be used as a reliable automated ginseng grade automatic measurement method.

Phase transition of (Bi, Pb)-2223 superconductor induced by Fe3O4 addition

  • Ko, Y.J.;Oh, J.Y.;Song, C.Y.;Yang, D.S.;Tran, D.H.;Kang, B.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • We investigated the effect of Fe3O4 addition on the critical temperature of (Bi, Pb)-2223 polycrystalline samples. Bi1.6Pb0.4Sr2Ca2Cu3O10+δ + x wt. % Fe3O4 (x = 0.0, 0.2, 0.4, 0.6, and 0.8) samples were prepared by using a solid-state reaction method. The analysis of X-ray diffraction data indicates that as Fe3O4 is added, dominant phase of the sample changes from Bi-2223 to Bi-2212 with an increasing Bi-2201 phase. The transition temperature of the samples drastically decreased with the Fe3O4 addition. The resistance data of samples with x = 0.2 and 0.4 showed a double transition indicating a coexistence of Bi-2223 and Bi-2212 phase while the samples with x = 0.6 and 0.8 showed a single transition with a semiconducting behavior. This phase transition may originate from changes in local structure of the Bi-2223 system by Fe3O4 addition. Analysis of the pair distribution function of the Cu-O pair in the CuO2 plane calculated from extended X-ray absorption fine structure data revealed that the oxygen coordination of copper ion changes from CuO4 planar type (x = 0.0 - 0.4) to CuO5 pyramidal type (x = 0.6, 0.8). The correlated Debye-Waller factor, providing information on the atomic disorder within the CuO2 plane, shows an inverse relation to the coordination number. These results indicate that addition of Fe3O4 changes the oxygen distribution around Cu in the CuO2 plane, causing a phase transition from Bi-2223 to more stable Bi-2212/Bi-2201 phases.

Analysis of extreme wind speed and precipitation using copula (코플라함수를 이용한 극단치 강풍과 강수 분석)

  • Kwon, Taeyong;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.797-810
    • /
    • 2017
  • The Korean peninsula is exposed to typhoons every year. Typhoons cause huge socioeconomic damage because tropical cyclones tend to occur with strong winds and heavy precipitation. In order to understand the complex dependence structure between strong winds and heavy precipitation, the copula links a set of univariate distributions to a multivariate distribution and has been actively studied in the field of hydrology. In this study, we carried out analysis using data of wind speed and precipitation collected from the weather stations in Busan and Jeju. Log-Normal, Gamma, and Weibull distributions were considered to explain marginal distributions of the copula. Kolmogorov-Smirnov, Cramer-von-Mises, and Anderson-Darling test statistics were employed for testing the goodness-of-fit of marginal distribution. Observed pseudo data were calculated through inverse transformation method for establishing the copula. Elliptical, archimedean, and extreme copula were considered to explain the dependence structure between strong winds and heavy precipitation. In selecting the best copula, we employed the Cramer-von-Mises test and cross-validation. In Busan, precipitation according to average wind speed followed t copula and precipitation just as maximum wind speed adopted Clayton copula. In Jeju, precipitation according to maximum wind speed complied Normal copula and average wind speed as stated in precipitation followed Frank copula and maximum wind speed according to precipitation observed Husler-Reiss copula.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.