• Title/Summary/Keyword: Inverse Estimation

Search Result 458, Processing Time 0.026 seconds

Inertial Motion Sensing-Based Estimation of Ground Reaction Forces during Squat Motion (관성 모션 센싱을 이용한 스쿼트 동작에서의 지면 반력 추정)

  • Min, Seojung;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.377-386
    • /
    • 2015
  • Joint force/torque estimation by inverse dynamics is a traditional tool in biomechanical studies. Conventionally for this, kinematic data of human body is obtained by motion capture cameras, of which the bulkiness and occlusion problem make it hard to capture a broad range of movement. As an alternative, inertial motion sensing using cheap and small inertial sensors has been studied recently. In this research, the performance of inertial motion sensing especially to calculate inverse dynamics is studied. Kinematic data from inertial motion sensors is used to calculate ground reaction force (GRF), which is compared to the force plate readings (ground truth) and additionally to the estimation result from optical method. The GRF estimation result showed high correlation and low normalized RMSE(R=0.93, normalized RMSE<0.02 of body weight), which performed even better than conventional optical method. This result guarantees enough accuracy of inertial motion sensing to be used in inverse dynamics analysis.

Aquifer Parameter Identification and Estimation Error Analysis from Synthetic and Actual Hydraulic Head Data (지하수위 자료를 이용한 대수층의 수리상수 추정과 추정오차 분석)

  • 현윤정;이강근;성익환
    • The Journal of Engineering Geology
    • /
    • v.6 no.2
    • /
    • pp.83-93
    • /
    • 1996
  • A method is proposed to estimate aquifer parameters in a heterogeneous and anisotropic aquifer under steady-state groundwater flow conditions on the basis of maximum likelihood concept. Zonation method is adopted for parameterization, and estimation errors are analyzed by examining the estimation error covariance matrix in the eigenspace. This study demonstrates the ability of the proposed model to estimate parameters and helps to understand the characteristics of the inverse problem. This study also explores various features of the inverse methodology by applying it to a set of field data of the Taegu area. In the field example, transmissivities were estimated under three different zonation patterns. Recharge rates in the Taegu area were also estimated using MODINV which is an inverse model compatible with MODFLOW.The estimation results indicate that anisotropy of aquifer parameters should be considered for the crystalline rock aquifer which is the dominant aquifer system in Korea.

  • PDF

Deformation estimation of plane-curved structures using the NURBS-based inverse finite element method

  • Runzhou You;Liang Ren;Tinghua Yi ;Hongnan Li
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.83-94
    • /
    • 2023
  • An accurate and highly efficient inverse element labelled iPCB is developed based on the inverse finite element method (iFEM) for real-time shape estimation of plane-curved structures (such as arch bridges) utilizing onboard strain data. This inverse problem, named shape sensing, is vital for the design of smart structures and structural health monitoring (SHM) procedures. The iPCB formulation is defined based on a least-squares variational principle that employs curved Timoshenko beam theory as its baseline. The accurate strain-displacement relationship considering tension-bending coupling is used to establish theoretical and measured section strains. The displacement fields of the isoparametric element iPCB are interpolated utilizing nonuniform rational B-spline (NURBS) basis functions, enabling exact geometric modelling even with a very coarse mesh density. The present formulation is completely free from membrane and shear locking. Numerical validation examples for different curved structures subjected to different loading conditions have been performed and have demonstrated the excellent prediction capability of iPCBs. The present formulation has also been shown to be practical and robust since relatively accurate predictions can be obtained even omitting the shear deformation contributions and considering polluted strain measures. The current element offers a promising tool for real-time shape estimation of plane-curved structures.

Evaluation of mental and physical load using inverse regression on sinus arrhythmia scores

  • Lee, Dhong-H.;Park, Kyung-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.3-8
    • /
    • 1987
  • This paper develops a statistical mode which estimates mental and physical loads of light work from sinus arrhythmia (SA) scores. During experiments, various levels of mental and physical loads (respectively scored by information processing and finger tapping rates) were imposed on subjects and SA scores were measured from the subjects. Two methods were used in developing workload estimation model. One is an algebraic inverse function of a multivariate regression equation, where mental and physical loads are independent variables and SA scores are dependent variables. The other is a statistical multivariate inverse regression. Of the two methods, inverse function resulted in larger mean squqre error in predicting mental and physical loads. Hence, inverse regression model is recommended for precise workload estimation.

  • PDF

Transmission Modeling and Verification for the Inverse Estimation of Electronic Warfare Threats (전자전 위협체 역추적을 위한 송수신 모델링 및 검증)

  • Park, So Ryoung;Jeong, Hoe Chang;Kwon, Jae Wan;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.112-123
    • /
    • 2017
  • Research for the inverse estimation of RF threats and the efficient electronic attack based on the parameters of the electronic information has been active in the electronic warfare (EW) situations. In this paper, an EW transmission simulator is constructed from the modeling of radar threats, EW receivers, and propagation environments with the collected electronic information in order to verify the performance of the inverse estimation algorithm in various and practical EW situations. In simulation results, we show that the range tracking error and angle tracking error are produced within ten meters and one degree, respectively. And also, we show that the changing relations between the angle tracking error and the parameters of the monopulse angle tracking radar such as the beamwidth and squint angle in simulation results correspond with those in the theoretical modeling. Accordingly, the constructed EW simulator can be used to observe the modifying characteristics of the electronic information in transmission environments, and then, to evaluate the performance of the inverse estimation system in various EW situations.

A Study on Wall Emissivity Estimation using RPSO Algorithm (RPSO 알고리즘을 이용한 벽면 방사율 추정에 관한 연구)

  • Lee, Kyun-Ho;Baek, Seung-Wook;Kim, Ki-Wan;Kim, Man-Young
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2476-2481
    • /
    • 2007
  • An inverse radiation analysis is presented for the estimation of the wall emissivities for an absorbing, emitting, and scattering media with diffusely emitting and reflecting opaque boundaries. In this study, a repulsive particle swarm optimization(RPSO) algorithm which is a relatively recent heuristic search method is proposed as an effective method for improving the search efficiency for unknown parameters. To verify the performance of the proposed RPSO algorithm, it is compared with a basic particle swarm optimization(PSO) algorithm and a hybrid genetic algorithm(HGA) for the inverse radiation problem with estimating the wall emissivities in a two-dimensional irregular medium when the measured temperatures are given at only four data positions. A finite-volume method is applied to solve the radiative transfer equation of a direct problem to obtain measured temperatures.

  • PDF

Research on the Applicability of Conventional p-y curve for Lateral Behavior of Pile Foundation based on Inverse Analysis (역해석기법에 의한 기존의 p-y곡선 적용성에 관한 고찰)

  • Kim, Hyun-Uk;Goh, Jae-Sin;Kim, Nam-Ho;Kim, Yeon-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.390-400
    • /
    • 2010
  • BNWF(Beam on Nonlinear Winkler Foundation) method has long been adopted for lateral behavior analysis of pile foundation and widely recognized for its simplicity and accuracy up until now. However, due to lateral load tests which were done in limited conditions and theory-based input Parameter estimation, the applicbility of p-y curve has not been fully examined. Accordingly, we researched on the applicability of conventional input parameter estimation and the p-y curve to be determined by the estimation through inverse analysis based on lateral load tests.

  • PDF

Estimation of Defect Position on the Pipe Line by Inverse Problem (역 문제에 의한 파이프의 결함위치 평가)

  • Park, Sung-Oan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.139-144
    • /
    • 2011
  • This paper presents a boundary element application to determine the optimal impressed current densities at defect position on the pipe line. In this protection paint, enough current must be impressed to lower the potential distribution on the metal surface to the critical values. The optimal impressed current densities are determined in order to minimize the power supply for protection. This inverse problem was formulated by employing the boundary element method. Since the system of linear equations obtained was ill-conditioned, including singular value decomposition, conjugate gradient method were applied and the accuracies of these estimation. Several numerical examples are presented to demonstrate the practical applicability of the proposed method.

Real-Time Estimation of Stewart Platform Forward Kinematic Solution (스튜어트 플랫폼 순기구학 해의 실시간 추정기법)

  • 정규홍;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1632-1642
    • /
    • 1994
  • The Stewart Platform is a six-degree-of-freedom in-parallel-actuated manipiulator mechanism. The kinematic behavior of parallel mechanisms shows inverse characteristics as compared that of serial mechanisms; i.e, the inverse kinematic problem of Stewart Platform is straightforward, but no closed form solution of the forward kinematic problem has been previously presented. Thus it is difficult to calculate the 6 DOF displacement of the platform from the measured lengths of the six actuators in real time. Here, a real-time estimation algorithm which solves the Stewart Platform kinematic problem is proposed and tested through computer simulations and experiments. The proposed algorithm shows stable convergence characteristics, no estimation errors in steady state and good estimation performance with higher sampling rate. In experiments it is shown that the estimation result is the same as that of simulation even in the presence of measurement noise.

A Study on the Inverse Analysis of Surface Radiation in a Cylindrical Enclosure (원통형상에서의 표면복사 역해석에 관한 연구)

  • KIm, Ki-Wan;Baek, Seung-Wook;Ryou, Hong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.705-712
    • /
    • 2004
  • An inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure has been conducted in this study. Net energy exchange method was used to calculate the radiative heat flux on each surface, and a hybrid genetic algorithm was adopted to minimize an objective function, which is expressed by sum of square errors between estimated and measured or desired heat fluxes on the design surface. We have examined the effects of the measurement error as well as the number of measurement points on the estimation accuracy. Furthermore, the effect of a variation in one boundary condition on the other boundary conditions was also investigated to get the same desired heat flux and temperature distribution on the design surface.