• Title/Summary/Keyword: Inventory Trend Data

Search Result 32, Processing Time 0.016 seconds

A Study on the Intelligent Quick Response System for Fast Fashion(IQRS-FF) (패스트 패션을 위한 지능형 신속대응시스템(IQRS-FF)에 관한 연구)

  • Park, Hyun-Sung;Park, Kwang-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.163-179
    • /
    • 2010
  • Recentlythe concept of fast fashion is drawing attention as customer needs are diversified and supply lead time is getting shorter in fashion industry. It is emphasized as one of the critical success factors in the fashion industry how quickly and efficiently to satisfy the customer needs as the competition has intensified. Because the fast fashion is inherently susceptible to trend, it is very important for fashion retailers to make quick decisions regarding items to launch, quantity based on demand prediction, and the time to respond. Also the planning decisions must be executed through the business processes of procurement, production, and logistics in real time. In order to adapt to this trend, the fashion industry urgently needs supports from intelligent quick response(QR) system. However, the traditional functions of QR systems have not been able to completely satisfy such demands of the fast fashion industry. This paper proposes an intelligent quick response system for the fast fashion(IQRS-FF). Presented are models for QR process, QR principles and execution, and QR quantity and timing computation. IQRS-FF models support the decision makers by providing useful information with automated and rule-based algorithms. If the predefined conditions of a rule are satisfied, the actions defined in the rule are automatically taken or informed to the decision makers. In IQRS-FF, QRdecisions are made in two stages: pre-season and in-season. In pre-season, firstly master demand prediction is performed based on the macro level analysis such as local and global economy, fashion trends and competitors. The prediction proceeds to the master production and procurement planning. Checking availability and delivery of materials for production, decision makers must make reservations or request procurements. For the outsourcing materials, they must check the availability and capacity of partners. By the master plans, the performance of the QR during the in-season is greatly enhanced and the decision to select the QR items is made fully considering the availability of materials in warehouse as well as partners' capacity. During in-season, the decision makers must find the right time to QR as the actual sales occur in stores. Then they are to decide items to QRbased not only on the qualitative criteria such as opinions from sales persons but also on the quantitative criteria such as sales volume, the recent sales trend, inventory level, the remaining period, the forecast for the remaining period, and competitors' performance. To calculate QR quantity in IQRS-FF, two calculation methods are designed: QR Index based calculation and attribute similarity based calculation using demographic cluster. In the early period of a new season, the attribute similarity based QR amount calculation is better used because there are not enough historical sales data. By analyzing sales trends of the categories or items that have similar attributes, QR quantity can be computed. On the other hand, in case of having enough information to analyze the sales trends or forecasting, the QR Index based calculation method can be used. Having defined the models for decision making for QR, we design KPIs(Key Performance Indicators) to test the reliability of the models in critical decision makings: the difference of sales volumebetween QR items and non-QR items; the accuracy rate of QR the lead-time spent on QR decision-making. To verify the effectiveness and practicality of the proposed models, a case study has been performed for a representative fashion company which recently developed and launched the IQRS-FF. The case study shows that the average sales rateof QR items increased by 15%, the differences in sales rate between QR items and non-QR items increased by 10%, the QR accuracy was 70%, the lead time for QR dramatically decreased from 120 hours to 8 hours.

Landscape Object Classification and Attribute Information System for Standardizing Landscape BIM Library (조경 BIM 라이브러리 표준화를 위한 조경객체 및 속성정보 분류체계)

  • Kim, Bok-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.103-119
    • /
    • 2023
  • Since the Korean government has decided to apply the policy of BIM (Building Information Modeling) to the entire construction industry, it has experienced a positive trend in adoption and utilization. BIM can reduce workloads by building model objects into libraries that conform to standards and enable consistent quality, data integrity, and compatibility. In the domestic architecture, civil engineering, and the overseas landscape architecture sectors, many BIM library standardization studies have been conducted, and guidelines have been established based on them. Currently, basic research and attempts to introduce BIM are being made in Korean landscape architecture field, but the diffusion has been delayed due to difficulties in application. This can be addressed by enhancing the efficiency of BIM work using standardized libraries. Therefore, this study aims to provide a starting point for discussions and present a classification system for objects and attribute information that can be referred to when creating landscape libraries in practice. The standardization of landscape BIM library was explored from two directions: object classification and attribute information items. First, the Korean construction information classification system, product inventory classification system, landscape design and construction standards, and BIM object classification of the NLA (Norwegian Association of Landscape Architects) were referred to classify landscape objects. As a result, the objects were divided into 12 subcategories, including 'trees', 'shrubs', 'ground cover and others', 'outdoor installation', 'outdoor lighting facility', 'stairs and ramp', 'outdoor wall', 'outdoor structure', 'pavement', 'curb', 'irrigation', and 'drainage' under five major categories: 'landscape plant', 'landscape facility', 'landscape structure', 'landscape pavement', and 'irrigation and drainage'. Next, the attribute information for the objects was extracted and structured. To do this, the common attribute information items of the KBIMS (Korean BIM Standard) were included, and the object attribute information items that vary according to the type of objects were included by referring to the PDT (Product Data Template) of the LI (UK Landscape Institute). As a result, the common attributes included information on 'identification', 'distribution', 'classification', and 'manufacture and supply' information, while the object attributes included information on 'naming', 'specifications', 'installation or construction', 'performance', 'sustainability', and 'operations and maintenance'. The significance of this study lies in establishing the foundation for the introduction of landscape BIM through the standardization of library objects, which will enhance the efficiency of modeling tasks and improve the data consistency of BIM models across various disciplines in the construction industry.