• Title/Summary/Keyword: Invar Material

Search Result 33, Processing Time 0.038 seconds

X-RAY DIFFUSE SCATTERINGS IN A Fe-Pt INVAR ALLOY

  • Ono, F.;Maeta, H.;Bang, L.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.354-357
    • /
    • 1995
  • Measurements of X-ray diffuse scatterings were made in disordered single crystal of Fe-28.3 at%Pt Invar alloy around a 200-Bragg peak in a wide temperature range between 15 K and 300 K. Observed diffuse scatterings were almost spherical, suggesting a homogeneous disordered alloy. However, the qdependence of the observed thermal diffuse scattering was different from the usual type, indicating a possibility of existence of local distortion of lattice accompanied by a large gradient of stress.

  • PDF

Effects of Magnetic Characteristics on Coefficient of Thermal Expansion in Fe-Ni-Co-C Invar Alloy for Transmission Line (송전선 강심용 Fe-Ni-Co-C 합금의 열팽창계수에 미치는 자기적 특석의 영향)

  • Kim, Bong-Seo;Kim, Byung-Geol;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1346-1348
    • /
    • 2001
  • Generally, Invar alloy shows very low thermal expansion characteristics, lower than $2{\times}10^{-6}$/K approximately. To apply Fe-Ni-Co-C Invar alloy as a core material for large ampacity transmission line we studied the effects of magnetic properties on coefficient of thermal expansion. The coefficient of thermal expansion(CTE) suddenly decreases with addition of a little carbon(0.08%), increases with the increasing carbon and has a constant value at the composition over than 1.0%C. The trend of Curie temperature change with carbon is similar with that of CTE. Therefore, the CTE has a linear relationship with Curie temperature. However, the CTE linearly decreases with the ratio of saturation magnetization and Curie temperature(${\sigma}_s/T_c$).

  • PDF

Effect of Mo Addition of High-Strength Invar Alloy for Core of Transmission Line (송전선 강심용 고장도 인하합금의 Mo 첨가의 영향)

  • Kim, Bong-Seo;Yoo, Kyung-Jae;Kim, Byung-Geol;Lee, Hee-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.891-893
    • /
    • 1999
  • Invar alloys have characteristics with very low thermal expansion coefficient and low tensile strength. The mechanical properties of invar alloy have to being improved to apply for structural materials, especially for core of transmission line in electrical field. It is necessary low thermal expansion and high strength core material to transmit increased current capacity. In this paper, we investigated effect of Mo addition affected to thermal and mechanical properties and microstructure in Fe-Ni-Co ternary system.

  • PDF

Effects of Carbon Addition in High Strength Invar Alloy for Transmission Line (증용량 송전선 강심용 고강도 인바합금에 있어서 탄소 첨가의 영향)

  • Kim, Bong-Seo;Yoo, Hyung-Jae;Lee, Hee-Woong;Kim, Byung-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1599-1601
    • /
    • 2000
  • To study invar alloy as a core material for large ampacity over-head transmission line which have high strength and low thermal expansion coefficient simultaneously, thermal expansion coefficient, physical properties and hardness of Fe-Ni-Co-xC alloy have been studied. It is necessary that invar alloy possess low thermal expansion coefficient and high strength for increased capacity over-head transmission line. In this paper we tried to find out the effect of carbon addition related with mechanical and physical properties. It was found that the thermal expansion coefficient and hardness were increased with carbon addition for whole composition range but the saturation magnetization was decreased except for the range of 0.1$\sim$0.4%C.

  • PDF

Effects of Co Addition in High Strength and Low Thermal Expansion Invar Alloy (고강도 저열팽창 인바합금에 있어서 CO 첨가의 영향)

  • Kim, Bong-Seo;Jo, Yeong-Am;Yoo, Kyung-Jae;Kwon, Hae-Woong;Lee, Hui-Ung;Kim, Byung-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1901-1903
    • /
    • 1999
  • To investigate invar alloy as a core material for increased capacity over-head transmission line which have high strength and low thermal expansion coefficient, hardness and thermal expansion coefficient of Fe-Ni-Co alloy have been studied. It is necessary that invar alloy have low thermal expansion coefficient and high strength for increased capacity over-head transmission line. In this paper. we tried to find out the effect of Ni and Co which has ferromagnetic properties and high saturation magnetization. It was found that Ni decrease thermal expansion coefficient and hardness, Co decrease thermal expansion coefficient but increase hardness in Fe-xNi-Co system. In Fe-(29-x)Ni-Co system, the material has no low thermal expansion properties substituting Co instead of Ni in concentration range of $1\sim7$%Co.

  • PDF

Effect of Mechanical Properties by a Long Term Operation in High Capacity and Low Sag Conductor ( II ) (경년열화가 증용량 저이도 송전선의 기계적특성에 미치는 영향 (II))

  • Kim Shang-Shu;Kim Byung-Geol;Sin Goo-Yong;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.100-106
    • /
    • 2006
  • Today, restricted energy sources, environmental considerations and the high cost of transporting fuel have limited the number and location of available power plant sites. The pressures resulting from these conditions have tended to require the construction of long, high-capacity, high-voltage power lines. it's used to adapt to STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced) conductor for coping with these situations. STACIR/AW conductor was formed by the combination of INVAR/AW as the core for low sag and super thermal-resistant aluminum alloy conductor for current capacity increase. increase of temperature by current capacity and long span lines make the susceptible to the deterioration of thermo-mechanical properties(conductivity, tensile strength, E-modulus and twist property et al). In the present work, changes of thermo-mechanical properties with aging have been studied in STACIR/AW $410 mm^2$ conductor with forms of single wire and strand wire.

Effect of Heat-treatment in Low Thermal Expansion Coefficient Fe-Ni-Co alloy for Core Material of Increased Capacity Transmission Line (증용량 송전선 강심용 저열팽창 Fe-Ni-Co 합금에 있어서 용체화처리 영향)

  • 김봉서;유경재;김병걸;이희웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.950-952
    • /
    • 2000
  • Considering the effective distribution coefficient of Ni in Fe-Ni-Co invar alloy containing a little amount of carbon, we investigated on the thermal expansion coefficient(${\alpha}$). Fe-Ni-Co invar alloy had a large thermal expansion coefficient in as-casted compared with solution treated. The thermal expansion coefficient of Fe-Ni-Co alloy increased with the carbon content in both state of as-casted and solution treated. The effective distribution coefficient(Ke$\^$Ni/) of Ni was smaller than unity in alloy of not containing carbon, but is way larger than unity in alloy of containing carbon. It was considered that the homogeneity of Ni in primary austenite affected thermal expansion coefficient.

  • PDF

Low Temperature Growth of Multi-walled Carbon Nanotubes by Water-assisted Chemical Vapor Deposition (물 첨가된 열 화학 기상 증착법을 이용한 다중벽 탄소나노튜브의 저온 합성)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.430-430
    • /
    • 2008
  • 열화학기상 증착법으로 2원계 합금인 Invar 36(63wt% Fe, 37wt% Ni)을 이용하여 다중벽 탄소나노튜브를 360도의 저온에서 까지 합성이 가능함을 확인하였다. 촉매와 Si 기판과의 silicide형성을 막기 위한 Ti층의 두께가 증가함에 따라서 탄소나노튜브의 길이가 잘 자라는 것을 확인하였으며, 미량의 물이 첨가 되었을 경우 탄소나노튜브의 길이 성장에 큰 변화가 있음을 확인하였다. 또한 물을 포함하는 실험에서는 촉매인 Invar36의 두께가 0.5 nm 일 때에 비하여 0.25 nm 두께에서 물에 대한 영향이 더 크게 나타남을 SEM 사진을 통해 확인할 수 있었다.

  • PDF

Fabrication and characterization of fe-Ni Invar alloy thin films (Fe-Ni Invar 합금 박막의 증착 및 박막 특성 평가)

  • 김상섭;고영호;최장현;김병일;박용범
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 1999
  • Fe-Ni alloy thin films with about 3.5 $\mu\textrm{m}$ thickness were successfully grown on Al-killed steel substrates employing DC magnetron sputtering method, and then the4 film properties were characterized. The deposited film exhibited a fibre texture structure with the relationship of ${110}_\textrm{film}//{111}_\textrm{substrate}$. We found that the adhesion between the film and the substrate was fairly good considering no debonding behavior after the thermal cyclic test of 5,000 times from room temperature to $200^{\circ}C$. Also we found that the Fe-Ni alloy deposition induced a significant decrease of thermal expansion in the film processing, a new material system with much lower thermal expansion coefficient which can be applied more as shadow mask materials than an Al-killed steel sheet.

  • PDF

Developing improvement technology in pre-etching process for the Shadow Mask quality of flat color TV

  • Park, Jong-Moo;Park, Kwang-Ho;Jung, Hyo-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1164-1167
    • /
    • 2003
  • Recently CRT is getting flatted, As change of CRT trend from normal type to Flat type, the material of Shadow Mask was also changed from AK(Aluminum Killed) to Invar(Fe-Ni alloy) materials Until now we have used just AK(Aluminum Killed) for normal type TV(not flat type), but main raw material of shadow mask component was changed. . However recently Invar(Fe-Ni alloy) materials, which has advantage of Low Thermal Expansion and High Strength, has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. As main raw material of shadow mask component was changed, conditions of process were changed. One of them, the importance of pre-etching process (assistant process for developing & etching) is improved because there are so many particles in the pre-etching bath because of Ni compounds. Since the solubility of Ni in pre-etching solvent is very low related to Fe's, so the compounds of Ni happen to make particles.(the solubility of Fe is twenty times Ni's) that particles happen to make process troubles and NG productions so to clear the particles we had to established high cost filtering system, but it is useless. As time goes by the quantity of particles (Ni compounds) was increased because of the capability of filtering system was not enough, the particles was produced continuous in bath, and it make quality problems. Hence we tried to develop the new pre-etching solution to remove the particles (Ni compounds) and to cost down the filtering system's running cost. But in improving the solution we discovered the new pre-etching solution made the PR developing better. In former solution there were three kinds of chemistry (COOH)2 , H2O2 , H2S04 .first the function of (COOH)2 is drilling the surface of Invar, during this mechanism Ni compounds occurred. Second the function of H202 is removing the PR fringe (half UV exposure zone on PR(PVA)), Third the function of H2S04 is the catalysis of (COOH)2 In those, (COOH)2 was the main reason to make the Ni compounds. So to improve the solutions we had to change (COOH)2 to the other material. the chemistry we improved was a complex chemistry based on H2S04 . after using this chemistry the particles problem was disappeared and there was another advantage cut down the PR fringe. The New solution made the function of H202 better so the PR developing improved. To be direct the catalyst of the new solution helped the H202. anyway First thing after change the solution the quality of shadow Mask for flat color TV was improved & the yield also improved. But the more important thing is how to control the new solution. So we accepted the new concept which was the degree of freshness. The degree of freshness is based on non-reacted solution which was 100% ( the degree of freshness) and calculated the melted Ni quantity as time goes by. So we made the gauging liner plot. In conclusion, many companies tried to make fine pitched Shadow Mask ,generally to make quality jump up it needed a lot of cost & persons .in this case the shift of core material made it possible.

  • PDF