• Title/Summary/Keyword: Inulin clearance

Search Result 3, Processing Time 0.021 seconds

Experimental Studies on the Excretion of Uric acid in Rabbit (가토의 요산배설에 관한 실험적연구)

  • Hong, Yoon-Pyo
    • The Korean Journal of Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.67-76
    • /
    • 1971
  • The excretion of uric acid in man has been of great interest because of its importance as an end product in purine metabolism as well as of its role in causing gout. There are many differences in the modes of renal handling of urate among various species of animals. Uric acid actively secreted by the renal tubules of most vertebrate including amphibians, reptiles, and birds. On the other hand, in most mammals net tubular reabsorption of urate appears to be occurred with some exception, such, as Dalmatian dog. In the rabbits, however, the mechanism of renal excretion of uric acid has long been a subject of controversial results. Within a given group it was possible to find individuals with either net secretion or net reabsorption of urate depend on the experimental conditions. Excretion of urate can be depressed or enhanced by a variety of drugs belonging mainly to the aromatic acid group. Diodrast, probenecid, cinchophen and salicylates have been reported as uricosuric agents, on the other hand, lactate, benzoate, pyrazinoic acid, acetazolamide and chlorothiazide are known to be contraindicated to use for the patient with gout since these agents depress the excretion of uric acid from the kidney. However, complex and sometimes the paradoxical effects on the urate excretion by those above mentioned drugs are not uncommon. The experiments were designed to investigate the mechanisms of renal handling of urate as well as the effects of variety of drugs on the tubular transport of uric acid in the rabbits. Male or female white rabbits, from 1.5 to 2.5 kg in weight, were used. The experimental methods used in these studies were clearance, stop-flow, and retrograde injection techniques. The effects of saline, salicylate, chlorothiazide and probenecid were investigated in each experimental conditions. Results of the experiments were summarized as follows; 1. In the rabbits, the rate of urate clearance was always lower than the rate of inulin clearance. The filtration fraction of the urate was one third on an average, therefore, it is estimated that approximately two thirds of filtered urate was reabsorbed. 2. In the kidneys of rabbits, the urate clearance was increased significantly by administration of chlorothiazide and decreased by probenecid. The administration of salicylate had no effect on the rate of urate clearance. The filtration fraction of urate was increased by chlorothiazide and decreased by probenecid. 3. In the stop-flow studies, the U/P ratio of urate was higher than the U/P ratio of inulin in the proximal region, indicating the secretion of uric acid in the proximal tubules. The proximal peak was increased by chlorothiazide and inhibited by probenecid.4. In the retrograde injection studies, the reabsorption of urate in the proximal region was observed, and these reabsorptive transport of urate was depressed by either probenecid or by chlorothiazide. 5. No distal tubular activity was observed under any of these experimental conditions concerning urate transport. The results of these experiments show that probenecid inhibits both secretory and reabsorptive transport of uric acid in the kidney of the rabbits. The enhancement of secretory transport of urate by chlorothiazide in the clearance study was due to the secondary action of chlorothiazide which inhibits the reabsorptive transport of urate in the proximal tubules. It is evident that the urate transport in the kidneys of rabbits is bidirectional nondiffusive flux both secretory and reabsorptive directions in the proximal tubules.

  • PDF

Saturable Disposition of Taurine in the Cerebrospinal Fluid of the Rat

  • Chung, Suk-Jae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.11a
    • /
    • pp.99-113
    • /
    • 1996
  • Taurine, a ${\beta}$-amino acid, plays an important role as a neuromodulator and is necessary for the normal development of the brain. Since de novo synthesis of taurine in the brain is minimal and in vivo studies suggest that taurine does not cross the blood-brain barrier, the blood-cerebrospinal fluid (CSF) barrier is likely to play a role in taurine transport between the central nervous system and the systemic circulation. Therefore, we examined in vivo elimination of taurine from the CSF in the rat to characterize in vivo kinetics of elimination for taurine from the CSF is consistent with the in vitro study. Using a stereotaxic device, cannulaes were placed into the lateral ventricle and the cisterna magna of the rat. Radio-labelled taurine and inulin (a marker of CSF flow) were injected into the lateral ventricle, and the concentrations of the labelled compounds in the CSF were monitored for up to 3 hrs in the cisterna magna. The apparent clearance of taurine from CSF was greater than the estimated CSF flow (p<0.005), indicating that there is a clearance process in addition to the CSF flow. Taurine distribution into the choroid plexus was at least 10 fold higher than that found in other brain areas (e.g., cerebellum, olfactory bulb and cortex). When unlabelled taurine was co-administered with radio-labelled taurine, the apparent clearance of the labeled taurine was reduced (p<0.01), suggesting a saturable disposition of taurine from CSF. Distribution of taurine into the choroid plexus, cerebellum, olfactory bulb and cortex was similarly diminished, indicating that the saturable uptake of taurine into these tissues is responsible for the non-linear disposition. A pharmacokinetic model involving first order elimination and saturable distribution described these data adequately. The Michaelis-Menten rate constant estimated from in vivo elimination study is similar to that obtained in the in vitro uptake experiment Collectively, our results demonstrate that taurine is transported in the choroid plexus via a taurine is cleared from the CSF via a saturable process. This process may be functionally relevant to taurine homeostasis in the brain.

  • PDF

Sodium Dependent Taurine Transport into the Choroid Plexus, the Blood-Cerebrospinal Fluid Barrier

  • Chung, Suk-Jae;Ramanathan, Vikram;Brett, Claire M.;Giacomini, Kathleen M.
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.7-20
    • /
    • 1995
  • Taurine, a ${\beta}-amino$ acid, plays an important role as a neuromodulator and is necessary for the normal development of the brain. Since de novo synthesis of taurine in the brain is minimal and in vivo studies suggest that taurine dose not cross the blood-brain barrier, we examined whether the choroid plexus, the blood-cerebrospinal fluid (CSF) barrier, plays a role in taurine transport in the central nervous system. The uptake of $[^3H]-taurine$ into ATP depleted choroid plexus from rabbit was substantially greater in the presence of an inwardly directed $Na^+$ gradient taurine accumulation was negligible. A transient in side-negative potential gradient enhanced the $Na^+-driven$ uptake of taurine into the tissue slices, suggesting that the transport process is electrogenic, $Na^+-driven$ taurine uptake was saturable with an estimated $V_{max}$ of $111\;{\pm}\;20.2\;nmole/g/15\;min$ and a $K_M\;of\;99.8{\pm}29.9\;{\mu}M$. The estimated coupling ratio of $Na^+$ and taurine was $1.80\;{\pm}\;0.122.$ $Na^+-dependent$ taurine uptake was significantly inhibited by ${\beta}-amino$ acids, but not by ${\alpha}-amino$ acids, indicating that the transporter is selective for ${\beta}-amino$ acids. Since it is known that the physiological concentration of taurine in the CSF is lower than that in the plasma, the active transport system we characterized may face the brush border (i.e., CSF facing) side of the choroid plexus and actively transport taurine out of the CSF. Therefore, we examined in vivo elimination of taurine from the CSF in the rat to determine whether elimination kinetics of taurine from the CSF is consistent with the in vitro study. Using a stereotaxic device, cannulaes were placed into the lateral ventricle and the cisterna magna of the rat. Radio-labelled taurine and inulin (a marker of CSF flow) were injected into the lateral ventricle, and the concentrations of the labelled compounds in the CSF were monitored for upto 3 hrs in the cisterna magna. The apparent clearance of taurine from CSF was greater than the estimated CSF flow (p<0.005) indicating that there is a clearance process in addition to the CSF flow. Taurine distribution into the choroid plexus was at least 10 fold higher than that found in other brain areas (e. g., cerebellum, olfactory bulb and cortex). When unlabelled taurine was co-administered with radio-labelled taurine, the apparent clearance of taurine was reduced (p<0.0l), suggesting a saturable disposition of taurine from CSF. Distribution of taurine into the choroid plexus, cerebellum, olfactory bulb and cortex was similarly diminished, indicating that the saturable uptake of taurine into these tissues is responsible for the non-linear disposition. A pharmacokinetic model involving first order elimination and saturable distribution described these data adequately. The Michaelis-Menten rate constant estimated from in vivo elimination study is similar to that obtained in the in vitro uptake experiment. Collectively, our results demonstrate that taurine is transported in the choroid plexus via a $Na^+-dependent,saturable$ and apparently ${\beta}-amino$ acid selective mechanism. This process may be functionally relevant to taurine homeostasis in the brain.

  • PDF