With the arm in hyperabduction, we have carried out 525 procedures of supraclavicular brachial plexus block from Aug. 1976 to June 1980, whereas block with the arm in adduction has been customarily performed by other authors. The anesthetic procedure is as follows: 1) The patient lies in the dorsal recumbent position without a pillow under his head or shoulder. His arm is hyperabducted more than a 90 degree angle from his side, and his head is turned to the side opposite from that to be blocked. 2) An "X" is marked at a point 1 cm above the mid clavicle, immediately lateral to the edge of the anterior scalene muscle, and on the palpable portion of the subclavian artery. The area is aseptically prepared and draped. 3) A 22 gauge 3.5cm needle attached to a syringe filled with 2% lidocaine (7~8mg/kg of body weight) and epineprine(1 : 200,000) is inserted caudally toward the second portion of the artery where it crosses the first rib and parallel with the lateral border of the muscle until a paresthesia is obtained. 4) Paresthesia is usually elicited while inserting the needle tip about 1~2 em in depth. If so, the local anesthetic solution is injected after careful aspiration. 5) If no paresthesia is elicited, the needle is withdrawn and redirected in an attempt to elicit paresthesia. 6) If, after several attempts, no paresthesia is obtained, the local anesthetic solution is injected into the perivascular sheath after confirming that the artery is not punctured. 7) Immediately after starting surgery, Valium is injected for sedation by the intravenous route in almost all cases. The age distribution of the cases was from 11 to 80 years. Sex distribution was 476 males and 49 females (Table 1). Operative procedures consisted of 103 open reductions, 114 skin grafts combined with spinal anesthesia in 14, 87 debridements, 75 repairs, i.e. tendon (41), nerve(32), and artery (2), 58 corrections of abnormalities, 27 amputations above the elbow (5), below the elbow (3) and fingers (17), 20 primary closures, 18 incisions and curettages, 2 replantations of cut fingers. respectively (Table 2). Paresthesia was obtained in all cases. Onset of analgesia occured within 5 minutes, starting in the deltoid region in almost all cases. Complete anesthesia of the entire arm appeared within 10 minutes but was delayed 15 to 20 minutes in 5 cases and failed in one case. Thus, our success rate was nearly 100%. The duration of anesthesia after a single injection ranged from $3\frac{1}{2}$ to $4\frac{1}{2}$, hours in 94% of the cases. The operative time ranged from 0.5 to 4 hours in 92.4% of the cases(Table 3). Repeat blocks were carried out in 33 cases when operative times which were more than 4 hours in 22 cases and the others were completed within 4 hours (Table 4). Two patients of the 33 cases, who received microvasular surgery were injected twice with 2% lidocaine 20 ml for a total of $13\frac{1}{2}$ hours. The 157 patients who received surgery on the forearms or hands had pneumatic tourniquets (250 torrs) applied without tourniquet pain. There was no pneumothorax, hematoma or phrenic nerve paralysis in any of the unilateral and 27 bilateral blocks, but there was hoarseness in two, Horner's syndrome in 11 and shivering in 7 cases. No general seizures or other side effects were observed. By 20ml of 60% urcgratin study, we confirm ed the position of the needle tip to be in a safer position when the arm is in hyperabduction than when it is in adduction. And also that the humoral head caused some obstraction of the distal flow of the dye, indicating that less local anesthetic solution would be needed for satisfactory anesthesia. (Fig. 3,4).