• Title/Summary/Keyword: Intraoperative monitoring

Search Result 74, Processing Time 0.031 seconds

Secondary Neurulation Defects-1 : Retained Medullary Cord

  • Kim, Kyung Hyun;Lee, Ji Yeoun;Wang, Kyu-Chang
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.3
    • /
    • pp.314-320
    • /
    • 2020
  • Retained medullary cord (RMC) is a relatively recent term. Pang et al. newly defined the RMC as a late arrest of secondary neurulation leaving a non-functional vestigial portion at the tip of the conus medullaris. RMC, which belongs to the category of closed spinal dysraphism, is a cord-like structure that is elongated from the conus toward the cul-de-sac. Because intraoperative electrophysiological confirmation of a non-functional conus is essential for the diagnosis of RMC, only a tentative or an assumptive diagnosis is possible before surgery or in cases of limited surgical exposure. We suggest the term 'possible RMC' for these cases. An RMC may cause tethered cord syndrome and thus requires surgery. This article reviews the literature to elucidate the pathoembryogenesis, clinical significance and treatment of RMCs.

Application of Neurophysiological Studies in Clinical Neurology (임상신경생리 분야에서의 신경생리적 검사법의 응용)

  • Lee, Kwang-Woo;Park, Kyung-Seok
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Since Hans Berger reported the first paper on the human electroencephalogram in 1920s, huge technological advance have made it possible to use a number of electrophysiological approaches to neurological diagnosis in clinical neurology. In majority of the neurology training hospitals they have facilities of electroencephalography(EEG), electromyography(EMG), evoked potentials(EP), polysomnography(PSG), electronystagmography(ENG) and, transcranial doppler(TCD) ete. Clinicials and electrophysiologists should understand the technologic characteristics and general applications of each electrophysiological studies to get useful informations with using them in clinics. It is generally agreed that items of these tests are selected under the clinical examination, the tests are performed by the experts, and the test results are interpretated under the clinical background. Otherwise these tests are sometimes useless and lead clinicians to misunderstand the lesion site, the nature of disease, or the disease course. In this sense the clinical utility of neurophysiological tests could be summerized in the followings. First, the abnormal functioning of the nervous system and its environments can be demonstrated when the history and neurological examinations are equivocal. Second, the presence of clinically unsuspected malfunction in the nervous system can be revealed by those tests. Finally the objective changes can be monitored over time in the patient's status. Also intraoperative monitoring technique becomes one of the important procedures when the major operations in the posterior fossa or in the spinal cord are performed. In 1996, the Korean Society for Clinical Neurophysiology(KSCN) was founded with the hope that it will provide the members with the comfortable place for discussing their clinical and academic experience, exchanging new informations, and learning new techniques of the neurophysiological tests. The KSCN could collaborate with the International Federation of Clinical Neurophysiology(IFCN) to improve the level of the clinical neurophysiologic field in Korea as will as in Asian region.1 In this paper the clinical neurophysiological tests which are commonly used in clinical neurology and which will be delt with and educated by the KSCN in the future will be discussed briefly in order of EEG, EMG, EP, PSG, TCD, ENG, and Intraoperative monitoring.

  • PDF

Principles of Intraoperative Neurophysiological Monitoring with Insertion and Removal of Electrodes (수술 중 신경계감시검사에서 검사에 따른 전극의 삽입 및 제거방법)

  • Lim, Sung Hyuk;Park, Soon Bu;Moon, Dae Young;Kim, Jong Sik;Choi, Young Doo;Park, Sang Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • Intraoperative neurophysiological monitoring (INM) examination identifies the damage caused to the nervous system during surgery. This method is applied in various surgeries to validate the procedure being performed, and proceed with confidence. The assessment is conducted in an operating room, using subdermal needle electrodes to optimize the examination. There are no textbooks or guides for the correct stimuli and recording areas for the surgical laboratory test. This article provides a detailed description of the correct stimuli and recording parts in motor evoked potential (MEP), somatosensory evoked potential (SSEP), brainstem auditory evoked potentials (BAEP) and visual evoked potentials (VEP). Free-running Electromyography (EMG) is an observation of the EMG that occurs in the muscle, wherein the functional state of most cranial nerves and spinal nerve roots is determined. In order to help understand the test, an image depicting the inserting subdermal needle electrodes into each of the muscles, is attached. Furthermore, considering both the patient and the examiner, a safe method is suggested for removal of electrodes after conclusion of the test.

Surgical Outcomes of Thalamic Tumors in Children: The Importance of Diffusion Tensor Imaging, Neuro-Navigation and Intraoperative Neurophysiological Monitoring

  • Kim, Jun-Hoe;Phi, Ji Hoon;Lee, Ji Yeoun;Kim, Kyung Hyun;Park, Sung-Hye;Choi, Young Hun;Cho, Byung-Kyu;Kim, Seung-Ki
    • Brain Tumor Research and Treatment
    • /
    • v.6 no.2
    • /
    • pp.60-67
    • /
    • 2018
  • Background Recently, modern technology such as diffusion tensor imaging (DTI), neuro-navigation and intraoperative neurophysiological monitoring (IOM) have been actively adopted for the treatment of thalamic tumors. We evaluated surgical outcomes and efficacy of the aforementioned technologies for the treatment of pediatric thalamic tumors. Methods We retrospectively reviewed clinical data from 37 children with thalamic tumors between 2004 and 2017. There were 44 operations (27 tumor resections, 17 biopsies). DTI was employed in 17 cases, neuro-navigation in 23 cases and IOM in 14 cases. All diagnoses were revised according to the 2016 World Health Organization Classification of Tumors of the Central Nervous System. Progression-free survival (PFS) and overall survival (OS) rates were calculated, and relevant prognostic factors were analyzed. The median follow-up duration was 19 months. Results Fifteen cases were gross total resections (GTR), 6 subtotal resections (STR), and 6 partial resections (PR). Neurological status did not worsen after 22 tumor resections. There were statistically significant differences in terms of the extent of resection between the groups with DTI, neuro-navigation and IOM (n=12, GTR or STR=12) and the group without at least one of the three techniques (n= 15, GTR or STR=9, p=0.020). The mean PFS was $87.2{\pm}38.0$ months, and the mean OS $90.7{\pm}36.1$ months. The 5-year PFS was 37%, and the 5-year OS 47%. The histological grade ($p{\leq}0.001$) and adjuvant therapy (done vs. not done, p=0.016) were significantly related to longer PFS. The histological grade (p=0.002) and the extent of removal (GTR/STR vs. PR/biopsy, p=0.047) were significantly related to longer OS. Conclusion Maximal surgical resection was achieved with acceptable morbidity in children with thalamic tumors by employing DTI, neuro-navigation and IOM. Maximal tumor resection was a relevant clinical factor affecting OS; therefore, it should be considered the initial therapeutic option for pediatric thalamic tumors.

Artifacts and Troubleshooting in Intraoperative Neurophysiological Monitoring (수술중신경계감시검사에서 발생하는 인공산물의 종류와 해결 방법)

  • Lim, Sung Hyuk;Kim, Kap Kyu;Jang, Min Hwan;Kim, Ki Eob;Park, Sang-Ku
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.122-130
    • /
    • 2021
  • The types of artifacts that are observed in intraoperative neurophysiological monitoring (INM) is truly diverse. The removal of artifacts that interfere with the examination is essential. In addition, improving the quality of the examination by removing artifacts is a reflection of the competency of the examiner and is also the best way to ensure patient safety. However, if knowledge of the equipment or anesthesia in the operating room is insufficient due to lack of experience, artifacts cannot be removed even with a method appropriate to the situation. If artifacts are not separated and removed, the reading of the examination results in confusion in the operation process. This can be a fatal problem in neurosurgery that requires rapid and sophisticated procedures. In this paper, the causes of artifacts that occur during surgery are classified into electrical factors, non-electrical factors, and other factors, and a method and examination method for removing artifacts according to the specific situation is mentioned. Although the operating room environment is a very critical place to simultaneously consider various scenarios, we hope that a stable and optimal INM will play a role by knowing the types and causes of various artifacts and how to tackle them.

Application of Intraoperative Neurophysiological Monitoring in Aortic Surgery (대동맥수술에서의 수술 중 신경계감시의 적용)

  • Jang, Min Hwan;Chae, Ji Won;Lim, Sung Hyuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • Intraoperative neurophysiological monitoring (INM) ensures the stability and safety of specific surgeries in high-risk groups. As part of INM, intensive tests are conducted during the surgical process. When INM tests are applied during surgery, a delay in notifying the operating surgeon in cases of neurological defects can cause serious irreversible sequelae to the patient. Aortic replacement, which is necessitated due to aortic aneurysms and aortic dissection, is a complicated procedure that blocks the blood flow to the heart. When arteries that branch out from the aorta and supply blood to the spinal cord are replaced, blood flow to the spinal cord decreases, resulting in spinal ischemia. In aortic surgery, INM plays an important role in preventing spinal ischemia and serious complications by quickly detecting the early signs of spinal ischemia during cross-clamping and reporting it to the surgeon. Therefore, this paper was prepared to help examiners who conduct INM by detailing the process, method, time, and warning criteria for INM. This paper identifies the need for INM in aortic surgery and the process flow for a smooth test, accurate and rapid examination, and subsequent reporting.

Efficacy of minimal invasive cardiac output and ScVO2 monitoring during controlled hypotension for double-jaw surgery

  • Kim, Seokkon;Song, Jaegyok;Ji, Sungmi;Kwon, Min A;Nam, Dajeong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.19 no.6
    • /
    • pp.353-360
    • /
    • 2019
  • Background: Controlled hypotension (CH) provides a better surgical environment and reduces operative time. However, there are some risks related to organ hypoperfusion. The EV1000/FloTrac system can provide continuous cardiac output monitoring without the insertion of pulmonary arterial catheter. The present study investigated the efficacy of this device in double jaw surgery under CH. Methods: We retrospectively reviewed the medical records of patients who underwent double jaw surgery between 2010 and 2015. Patients were administered conventional general anesthesia with desflurane; CH was performed with remifentanil infusion and monitored with an invasive radial arterial pressure monitor or the EV1000/FloTrac system. We allocated the patients into two groups, namely an A-line group and an EV1000 group, according to the monitoring methods used, and the study variables were compared. Results: Eighty-five patients were reviewed. The A-line group reported a higher number of failed CH (P = 0.005). A significant correlation was found between preoperative hemoglobin and intraoperative packed red blood cell transfusion (r = 0.525; P < 0.001). In the EV1000 group, the mean arterial pressure (MAP) was significantly lower 2 h after CH (P = 0.014), and the cardiac index significantly decreased 1 h after CH (P = 0.001) and 2 h after CH (P = 0.007). Moreover, venous oxygen saturation (ScVO2) decreased significantly at both 1 h (P = 0.002) and 2 h after CH (P = 0.029); however, these values were within normal limits. Conclusion: The EV1000 group reported a lower failure rate of CH than the A-line group. However, EV1000/FloTrac monitoring did not present with any specific advantage over the conventional arterial line monitoring when CH was performed with the same protocol and same mean blood pressure. Preoperative anemia treatment will be helpful to decrease intraoperative transfusion. Furthermore, ScVO2 monitoring did not present with sufficient benefits over the risk and cost.

Papillary Fibroelastoma of the Aortic Valve: Discovered by Chance with Intraoperative Transesophageal Echocardiography - A case report - (수술실 내 경식도 심장초음파검사에서 우연히 발견된 유두상 섬유탄력종 - 1예 보고 -)

  • Kim, Jeong-Won;Jung, Jong-Pil;Park, Soon-Eun;Kim, Young-Min;Park, Chang-Ryul;Shin, Je-Kyoun
    • Journal of Chest Surgery
    • /
    • v.40 no.9
    • /
    • pp.637-640
    • /
    • 2007
  • Papillary fibroelastoma is a rare benign cardiac tumor with an elevated risk for embolization and most papillary fibroelastomas do not cause symptoms. In this report, we describe a case of previous undiagnosed masses of the aortic valve that were incidentally found on intraoperative transesophageal echocardiography during coronary artery bypass surgery. Upon surgery, masses were found on the left and right aortic cusps and the pathological findings were consistent with a papillary fibroelastoma.

Value of Indocyanine Green Videoangiography in Deciding the Completeness of Cerebrovascular Surgery

  • Moon, Hyung-Sik;Joo, Sung-Pil;Seo, Bo-Ra;Jang, Jae-Won;Kim, Jae-Hyoo;Kim, Tae-Sun
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.6
    • /
    • pp.349-355
    • /
    • 2013
  • Objective : Recently, microscope-integrated near infrared indocyanine green videoangiography (ICG-VA) has been widely used in cerebrovascular surgery because it provides real-time high resolution images. In our study, we evaluate the efficacy of intraoperative ICG-VA during cerebrovascular surgery. Methods : Between August 2011 and April 2012, 188 patients with cerebrovascular disease were surgically treated in our institution. We used ICG-VA in that operations with half of recommended dose (0.2 to 0.3 mg/kg). Postoperative digital subtraction angiography and computed tomography angiography was used to confirm anatomical results. Results : Intraoperative ICG-VA demonstrated fully occluded aneurysm sack, no neck remnant, and without vessel compromise in 119 cases (93.7%) of 127 aneurysms. Eight clipping (6.3%) of 127 operations were identified as an incomplete aneurysm occlusion or compromising vessel after ICG-VA. In 41 (97.6%) of 42 patients after carotid endarterectomy, the results were the same as that of postoperative angiography with good patency. One case (5.9%) of 17 bypass surgeries was identified as a nonfunctioning anastomosis after ICG-VA, which could be revised successfully. In the two patients of arteriovenous malformation, ICG-VA was useful for find the superficial nature of the feeding arteries and draining veins. Conclusion : ICG-VA is simple and provides real-time information of the patency of vessels including very small perforators within the field of the microscope and has a lower rate of adverse reactions. However, ICG-VA is not a perfect method, and so a combination of monitoring tools assures the quality of cerebrovascular surgery.

Intraoperative near-infrared spectroscopy for pedicled perforator flaps: a possible tool for the early detection of vascular issues

  • Marchesi, Andrea;Garieri, Pietro;Amendola, Francesco;Marcelli, Stefano;Vaienti, Luca
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.457-461
    • /
    • 2021
  • Background Pedicled perforator flaps can present postoperative complications similar to those encountered in free flap surgery. Beyond a clinical evaluation, there is still no reliable technical aid for the early prediction of vascular issues. The aim of this study was to assess the support of near-infrared spectroscopy technology as an intraoperative tool to anticipate postsurgical flap ischemia. Methods We prospectively enrolled 13 consecutive patients who were referred to our hospital from March 2017 to July 2018 and required a reconstructive procedure with a pedicled fasciocutaneous perforator flap. We measured flap peripheral capillary oxygen saturation (SpO2) in each patient with a Somanetics INVOS 5100C Cerebral/Somatic Oximeter (Medtronic), both before and after transposition. Patient demographics, operative data, and complications were then recorded during the following 6 months. We analyzed the data using the Wilcoxon signed-rank test and linear regression. Results The mean flap SpO2 before and after transposition was 92%±3% and 78%±19%, respectively. The mean change in SpO2 was 14%±17%, with a range of 0% to 55%. The change in saturation and mean saturation ratio were significantly different between patients with and without postoperative flap necrosis. Conclusions An immediate quantitative analysis of flap peripheral capillary SpO2 after transposition has never before been described. In our experience, an intraoperative drop in SpO2 equal to or greater than 15%-20% predicted vascular complications in pedicled perforator flaps. Conversely, flap size and rotation angle were not correlated with the risk of flap necrosis.