• Title/Summary/Keyword: Intraday Data

Search Result 25, Processing Time 0.022 seconds

An Empirical Study on Trading Techniques Using VPIN and High Frequency Data (VPIN과 고빈도 자료를 활용한 거래기법에 관한 실증연구)

  • Jung, Dae-Sung;Park, Jong-Hae
    • Management & Information Systems Review
    • /
    • v.38 no.4
    • /
    • pp.79-93
    • /
    • 2019
  • This study analyzed the information effect of KOSPI200 market and KOSPI200 futures market and volume synchronized probability of informed trading (VPIN). The data period is 760 days from July 8, 2015 to August 9, 2018, and the intraday trading data is used based on the trading period of the KOSPI 200 Index. The findings of the empirical analysis are as follows. First, as a result of regression analysis of the same parallax, when the level of VPIN is high, the return and volatility of KOSPI200 are high. Second, the KOSPI200 returns before and after the VPIN measurement and the return of the KOSPI200 future had a positive relationship with the VPIN. The cumulative returns of KOSPI200 futures were positive for about 15 minutes.Finally, we find that portfolios with high levels of VPIN showed high KOSPI200 and KOSPI200 futures return. These results confirmed the applicability of VPIN as a trading strategy index. The above results suggest that KOSPI200 and KOSPI200 futures markets will be able to explore volatility and price changes, and also be useful indicators of financial market risk.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

The Dynamics of Intraday Price Transmission Across the Stock Index Futures Markets: The Standard & Poor's 500, the New York Stock Exchange Composite, and the Major Market Index Futures (주가지수선물시장 상호간의 가격정보 전달구조에 관한 연구)

  • Kim, Min-Ho
    • The Korean Journal of Financial Management
    • /
    • v.12 no.2
    • /
    • pp.239-271
    • /
    • 1995
  • 본 연구는 현재 미국에서 거래되고 있는 세 가지 주가지수선물 상호간의 일중(intradaily) 가격선도(price leadership) 관계에 관한 실증분석이다. 본 연구가 기존의 연구와 다른점은, 기존의 연구가 주가지수선물과 그 기준이 되는 현물 가격사이의 가격 선도 관계에 초점을 두고 있는데 반하여 본 연구는 주가지수선물 시장 사이에서 존재하는 가격 선도관계를 분석하고 있다는 점이다. 실증 분석의 대상이 된 주가지수선물들은 Chicago Mercantile Exchange의 Standard and Poor's 500 Index(S&P 500), New York Futures Exchange의 New York Stock Exchange Composit Index (NYSE), 그리고 Chicago Board of Trade의 Major Market Index(MMI)이다. 만약 이들 시장들이 정보의 전달에 있어서 효율적(informationally efficient) 이라면 이들 가격간에 선도-지연(lead-lag) 현상은 존재하지 않을 것이다. 그러나 어느 한 시장이 새로운 정보를 선물가격에 반영하는데 다른 시장에 비해 상대적으로 느리다면, 이들 시장 상호간에는 가격의 전이(transmission)현상이 존재하게 될 것이다. 이들 선물간의 일중 가격선도 관계 연구는 이러한 시장의 효율성 문제를 밝히는데 의의가 있을 뿐만 아니라, 시장간의 단기적 가격 괴리를 이용하려는 차익거래자들에게도 유용하게 쓰일 수 있을 것이다. 본 연구는 위에서 언급한 각각의 주가지수선물들이 가격 선도성을 가질 수 있는 이유와 관련된 다음과 같은 세 가지 가설을 설정하였다. 첫째 가설은, 가격의 선도성은 거래량과 관련이 있다는 것이다. 즉, 이들 주가지수선물 중 가장 거래량이 많은 S&P 500 선물이 다른 선물을 선도할 것이라는 가설이다. 둘째, 가격의 선도성은 주가지수를 구성하는 주식의 수에 비례한다는 가설이다. 다시 말하면, 보다 않은 수로 구성된 주가지수일수록 정보처리 속도가 빠르다는 가설이다. 따라서, 본 연구에 포함된 주가지수선물 중 가장 많은 수의 주식을 대상으로 하는 NYSE 선물이 다른 선물을 선도할 것이다. 마지막 가설은 정보의 처리는 대형주 혹은 기관선호주(institutionally-favored)들이 주도한다는 것이다. 따라서, 주로 이와 같은 주식들로 구성 된 MMI 선물이 선도성을 가질 수 있다는 것이다. 위의 가설들을 검증하고 시장간의 가격 선도관계를 분석하기 위하여 본 연구는 vector autoregressive(VAR) 모형을 이용하여 충격-반응 함수(impulse response functions)를 계산하고, 분산분해(variance decomposition)를 수행하였다. 또한 가격 상호간에 존재할지도 모르는 공적분(cointegration)관계를 Johansen(1991)과 Jokansen and Juselius (1992) 등이 제시한 다변량 공적분 검정(multivariate cointegration test)를 통하여 분석하였다. 분석기간은 1986년 1월부터 1990년 7월까지이며, 각 주가지수선물들의 5분 간격 data를 사용하였다. 연구결과, 충격-반응 분석은 어느 한 시장에서의 충격(shock)은 다른 시장으로 매우 빠르게 전달되고 있음을 보여 주었다. 그러나 충격의 지속정도는 그 충격의 진원지에 따라 달랐다. 즉, NYSE나 MMI 선물로부터 발생 한 충격은 다른 시장의 가격에 5분 안에 반영을 끝냈지 만 S&P 500 선물에서 발생한shock은 그 이상 지속되었다. 또한, 분산분해 결과 S&P 500 선물이 자기자신 뿐만 아니라 다른 시장의 예상하지 못했던 움직임(unexpected movements)을 설명하는데 가장 큰 설명력(explanatory power)을 가지고 있었다. 결론적으로 S&P 500 선물이 다른 선물을 약 5분 간격으로 선도하였다. 이는 가격의 선도가 거래량과 밀접한 관계가 있음을 보여 주는 것이다.

  • PDF

Market Efficiency in Real-time : Evidence from the Korea Stock Exchange (한국유가증권시장의 실시간 정보 효율성 검증)

  • Lee, Woo-Baik;Choi, Woo-Suk
    • The Korean Journal of Financial Management
    • /
    • v.26 no.3
    • /
    • pp.103-138
    • /
    • 2009
  • In this article we examine a unique data set of intraday fair disclosure(FD) releases to shed light on market efficiency within the trading day. Specifically, this paper analyze the response of stock prices on fair disclosure disseminated in real-time through KIND(Korea Investor's Network for Disclosure) on Korea stock exchange during the period from January 2003 to September 2004. We find that the prices of stock experiences a statistically and economically significant increase beginning seconds after the fair disclosure is initially announced and lasting approximately two minutes. The stock price responds more strongly to fair disclosure on smaller firm but the response to fair disclosure on the largest firm stock is more gradual, lasting five minutes. We also examine the profitability of a short-term trading strategy based on dissemination of fair disclosure. After controlling for trading costs we find that trader who execute a trade following initial disclosure generate negative profits, but trader buying stock before initial disclosure realize statistically significant positive profit after two minute of disclosure. Summarizing overall results, our evidence supports that security prices on Korea stock exchange reflects all available information within two minutes and the Korea stock market is semi-strongly efficient enough that a trader cannot generate profits based on widely disseminated news unless he acts almost immediately.

  • PDF

Expiration-Day Effects: The Korean Evidence (주가지수 선물과 옵션의 만기일이 주식시장에 미치는 영향: 개별 종목 분석을 중심으로)

  • Choe, Hyuk;Eom, Yun-Sung
    • The Korean Journal of Financial Management
    • /
    • v.24 no.2
    • /
    • pp.41-79
    • /
    • 2007
  • This study examines the expiration-day effects of stock index futures and options in the Korean stock market. The so-called 'expiration-day effects', which are the abnormal stock price movements on derivatives expiration days, arise mainly from cash settlement. Index arbitragers have to bear the risk of their positions unless they liquidate their index stocks on the expiration day. If many arbitragers execute large buy or sell orders on the expiration day, abnormal trading volumes are likely to be observed. If a lot of arbitragers unwind positions in the same direction, temporary trading imbalances induce abnormal stock market volatility. By contrast, if some information arrives at market, the abnormal trading activity must be considered a normal process of price discovery. Stoll and Whaley(1987) investigated the aggregate price and volume effects of the S&P 500 index on the expiration day. In a related study, Stoll and Whaley(1990) found a similarity between the price behavior of stocks that are subject to program trading and of the stocks that are not. Thus far, there have been few studies about the expiration-day effects in the Korean stock market. While previous Korean studies use the KOSPI 200 index data, we analyze the price and trading volume behavior of individual stocks as well as the index. Analyzing individual stocks is important for two reasons. First, stock index is a market average. Consequently, it cannot reflect the behavior of many individual stocks. For example, if the expiration-day effects are mainly related to a specific group, it cannot be said that the expiration of derivatives itself destabilizes the stock market. Analyzing individual stocks enables us to investigate the scope of the expiration-day effects. Second, we can find the relationship between the firm characteristics and the expiration-day effects. For example, if the expiration-day effects exist in large stocks not belonging to the KOSPI 200 index, program trading may not be related to the expiration-day effects. The examination of individual stocks has led us to the cause of the expiration-day effects. Using the intraday data during the period May 3, 1996 through December 30, 2003, we first examine the price and volume effects of the KOSPI 200 and NON-KOSPI 200 index following the Stoll and Whaley(1987) methodology. We calculate the NON-KOSPI 200 index by using the returns and market capitalization of the KOSPI and KOSPI 200 index. In individual stocks, we divide KOSPI 200 stocks by size into three groups and match NON-KOSPI 200 stocks with KOSPI 200 stocks having the closest firm characteristics. We compare KOSPI 200 stocks with NON-KOSPI 200 stocks. To test whether the expiration-day effects are related to order imbalances or new information, we check price reversals on the next day. Finally, we perform a cross-sectional regression analysis to elaborate on the impact of the firm characteristics on price reversals. The main results seem to support the expiration-day effects, especially on stock index futures expiration days. The price behavior of stocks that are subject to program trading is shown to have price effects, abnormal return volatility, and large volumes during the last half hour of trading on the expiration day. Return reversals are also found in the KOSPI 200 index and stocks. However, there is no evidence of abnormal trading volume, or price reversals in the NON-KOSPI 200 index and stocks. The expiration-day effects are proportional to the size of stocks and the nearness to the settlement time. Since program trading is often said to be concentrated in high capitalization stocks, these results imply that the expiration-day effects seem to be associated with program trading and the settlement price determination procedure. In summary, the expiration-day effects in the Korean stock market do not exist in all stocks, but in large capitalization stocks belonging to the KOSPI 200 index. Additionally, the expiration-day effects in the Korean stock market are generally due, not to information, but to trading imbalances.

  • PDF