• Title/Summary/Keyword: Intracisternal

Search Result 24, Processing Time 0.016 seconds

The Effect of Recombinant Tissue Plasminogen Activator on the Intracerebral Hematomas in Experimental Cat Models

  • Jo, Kwang-Wook;Kim, Seong-Rim;You, Seung-Hoon;Kim, Sang-Don;Park, Ik-Seong;Baik, Min-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.4
    • /
    • pp.287-292
    • /
    • 2005
  • Objective: Recent clinical studies have demonstrated that intracisternal administration of recombinant tissue plasminogen activator(rt-PA) can facilitate the normal clearing of blood from the subarachnoid space. Urokinase, a first generation fibrinolytic agent, has been used to liquify such clots with some success. Therefore, recombinant tissue plasminogen activator, a second generation fibrinolytic drug that may be safer and more effective, is studied to evaluate its dosage to lyse clots in vitro and reactivity in the brain parenchyme. Methods: Intracerebral hematomas were created by stereotactically injecting 2ml of clotted autogenous blood into the brain parenchyme of total 28 anesthetized adult cats (weighting 3.8 to 4.1 kg). The control animals (group A) received 1 ml of normal saline injected into the clots and the experimental animals received each 0.1 mg of rt-PA (group B), 0.5mg of rt-PA (group C) and 1 mg of rt-PA (group D) at 6 hours after the clot injection. Results: 1. The amount of remained clots after lysing the hematomas were as follows: $1.80{\pm}0.17ml$ in group A, $1.65{\pm}0.23ml$ in group B, $0.61{\pm}0.37ml$ in group C and $0.52{\pm}0.34$ in group D. The result indicated that hematomas in rt-PA treated groups (C & D) were lysed better than the control group. 2. At least 0.5mg of rt-PA should be required for the lysis of 2ml of hematomas. 3. Light microscopic examination revealed no histological evidence of hemorrhage in tissue sections from each brain. Conclusion: Recombinant tissue plasminogen activator may be safely and effectively employed for the lysis of intracerebral hematomas in animal model.

Immunocytochemical Investigation on the Intracisternal Accumulations of Storage Protein in Pea Cotyledon Cells (완두 자엽세포의 소포체 내강에 축적된 저장 단백질에 대한 면역세포화학적 연구)

  • Jeong, Byung-Kap;Park, Hong-Duok
    • Applied Microscopy
    • /
    • v.31 no.2
    • /
    • pp.199-206
    • /
    • 2001
  • In 1980s, the fragmentation or subdivision of protein deposits at the periphery of protein storage vacuole was suggested as the only route of PB development in pea cotyledon cells. Since then, other independant processes such as terminal dilation , transformation and de novo development have been discussed as alternative routes for PB development, and today, these multiple mechanisms of PB development are accepted as a result of active investigations. For analysis of the protein accumulations in the ER cisternae during seed development, immunocytochemical gold labellings were applyed on the single cells separated by enzymatic digestion from cotyledon tissue. Anti-legumin labellings at the early stage, and anti-vicilin labellings at the intermediate stage were observed on the protein-filled ER. The $\alpha-Tip$, which is the ER retention protein, was labelled somewhat at late stage, and PPase, a sort of tonoplast membrane protein, was labelled at early stage.

  • PDF

Botulinum Toxin Type A Attenuates Activation of Glial Cells in Rat Medullary Dorsal Horn with CFA-induced Inflammatory Pain

  • Kim, Min-Ji;Cho, Jin-Ho;Kim, Hye-Jin;Yang, Kui-Ye;Ju, Jin-Sook;Lee, Min-Kyung;Park, Min-Kyoung;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.40 no.2
    • /
    • pp.71-77
    • /
    • 2015
  • The activation of glial cells in the spinal cord has been contribute to the initiation and maintenance of pain facilitation induced by peripheral inflammation and nerve injury. The present study investigated effects of botulinum toxin type A (BoNT-A), injected subcutaneously or intracisternally, on the expression of microglia and astrocytes in rats. Complete Freund's Adjuvant (CFA)-induced inflammation was employed as an orofacial chronic inflammatory pain model. A subcutaneous injection of $40{\mu}L$ CFA into the vibrissa pad was performed under 3% isoflurane anesthesia in SD rats. Immunohistochemical analysis for changes in Iba1 (a microglia marker) and GFAP (an astrocyte marker), were performed 5 days after CFA injection. Subcutaneous injection of CFA produced increases in Iba1 and GFAP expression, in the ipsilateral superficial lamia I and II in the medullary dorsal horn of rats. Subcutaneous treatment with BoNT-A attenuated the up-regulation of Iba1 and GFAP expressions induced by CFA injection. Moreover, intracisternal injection of BoNT-A also attenuated the up-regulated Iba1 and GFAP expressions. These results suggest that the anti-nociceptive action of BoNT-A is mediated by modulation activation of glial cells, including microglia and astrocyte.

Analgesic Effects of Triptolide via Peripheral and Central Administration in Rat Model of Inflammatory Orofacial Pain (Triptolide의 말초와 중추투여에 의한 흰 쥐의 안면부 통증경감효과)

  • Kim, Yun-Kyung;Choi, Ja-Hyeong;Lee, Hyun-Jung;Son, Yoo-Jin;Yoon, So-Yeong;Lee, Jung-Hwa;Lee, Min-Kyung
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.424-429
    • /
    • 2015
  • The aim of this study was to investigate whether peripheral or central administration of triptolide is involved in pain modulation in inflammatory orofacial pain. The inflammatory orofacial pain was induced by the injection of 5% formalin into right vibrissa pad of rats. The pain behavioral response was measured the number of grooming or scratching on the orofacial area for 9 successive 5 minutes intervals. Triptolide was administrated into the identified vibrissa pad (12.5, 25, $50{\mu}g/50{\mu}l$) or intracisternal space (0.01, 0.1, $1{\mu}g/10{\mu}l$) 10 min before formalin injection. The nociceptive responses were reduced in the 2nd phase (11~45 minutes), particularly 20, 30 minutes after fomalin injection following administration of triptolide into vibrissa pad (25, $50{\mu}g/50{\mu}l$). Intracisternal ($1{\mu}g/10{\mu}l$) administration of triptolide alleviated the formalin-induced pain behaviors in the 2nd phase, especially 25~40 minutes after formalin injection. Triptolide could be a promising analgesic agent in the treatment of inflammatory orofacial pain.