• Title/Summary/Keyword: Intracerebroventricular injection

Search Result 41, Processing Time 0.031 seconds

Acupuncture Treatment at HT8 Protects Hippocampal Cells in Dentate Gyrus on Kainic Acid-Induced Epilepsy Mice Model (소부혈(少府穴) 자침(刺鍼)이 Kainic Acid로 유도(誘導)된 간질(癎疾) 동물(動物) 모델의 해마(海馬) 치상회(齒狀回)에 미치는 영향(影響))

  • Kim, Seung-Tae;Chung, Joo-Ho;Jeong, Wu-Byung;Kim, Jang-Hyun;Kang, Min-Jung;Hong, Mee-Sook;Park, Hae-Jeong;Kim, Yeon-Jung;Park, Hi-Joon;Lee, Hye-Jeong
    • Korean Journal of Acupuncture
    • /
    • v.24 no.4
    • /
    • pp.99-110
    • /
    • 2007
  • Objectives : Epilepsy is one of the most common serious brain disorders that affect people of all ages, and it is characterized by recurrent unprovoked seizures. We examined whether acupuncture can reduce both the incidence of seizures and hippocampal cell death in dentate gyrus (DG) using a mouse model of kainic acid (KA)-induced epilepsy. Methods : ICR mice ($20{\sim}25$ g) were given acupuncture once a day at acupoint HT8 (sobu) bilaterally during 2 days before KA injection. After an intracerebroventricular injection of 0.1${\mu}g$ of KA, acupuncture treatment was subsequently administered once more (total 3 times), and the degree of seizure was observed for 20 min. Three hours after injection, we confirmed the neural cell death using cresyl violet staining and silver impregnation staining, and determined the expressions of c-Fos and glutamate decarboxylase (GAD)-67 using immunohistochemistry techniques in the DG. Results : KA induced epileptic seizure, neural cell death, increased c-Fos expression and decreased GAD-67 expression in the DG. Acupuncture treatment at HT8 reduced the severity of the epileptic seizure and inhibited neural cell death from KA. In addition, acupuncture normalized the expressions of c-Fos and GAD-67 in the same areas. Conclusions : These results demonstrated that acupuncture treatment at HT8 may reduce the KA-induced epileptic seizure and neural cell death in the DG possibly by normalizing c-Fos expressions and the gamma-aminobutyric acid neurons.

  • PDF

Identification of Genes Involved in the Onset of Female Puberty of Rat

  • Eun Jung Choi;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • Onset of female puberty follows a series of prepubertal cellular and molecular events including changes of synaptic plasticity, synthetic and releasing activity and gene expression. Dramatic increase of gonadal steroid level is one of the most prominent changes before the onset of puberty. Based on the importance of steroid feedback upon the hypothalamus, we adopted an estrogen sterilized rat (ESR) model where 100 ng of 17$\eta$-estradiol were administered into neonatal pubs for 7 days after birth. To identify genes involved in the onset of female puberty, we applied PCR differential display using RNA samples derived from ESR and control rat hypothalami. About 100 out of more than 1000 RNA species examined displayed differential expression patterns between a 60-day old control rat and ESR. Sequence analysis of differentially amplified PCR products showed homology with genes such as mouse kinesin superfamily-associated protein 3 (KAP3) and several cDNAs previously described by others in mouse and human tissues. Several gene products such as 2-1 and 8-1 corresponded to novel DNA sequences. We analyzed mRNA levels of KAP3, 2-1 and 8-1 genes in the hypothalami derived from neonatal, 6-, 28-, 31-, and 40-day old rats. Northern blot analysis showed that mRNAs of KAP3, 2-1 and 8-1 genes were markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited prepubertal increases in KAP3, 2-1 and 8-1 mRNA levels. Therefore, these genes may play important roles in the initiation of hypothalamic puberty. In addition, intracerebroventricular (icv) injection of antisense KAP3 oligodeoxynucleotide (ODN) clearly delayed puberty initiation determined by vaginal opening, which further confirmed that KAP3 plays an important role in the regulation of puberty initiation.

  • PDF

Korean Mistletoe (Viscum album var. coloratum) Inhibits Amyloid β Protein (25-35)-induced Cultured Neuronal Cell Damage and Memory Impairment

  • Jang, Ji Yeon;Kim, Se-Yong;Song, Kyung-Sik;Seong, Yeon Hee
    • Natural Product Sciences
    • /
    • v.21 no.2
    • /
    • pp.134-140
    • /
    • 2015
  • The present study aims to investigate the effect of methanol extract of Korean mistletoe (KM; Viscum album var. coloratum), on amyloid $\beta$ protein ($A\beta$) (25-35), a synthetic 25-35 amyloid peptide, -induced neurotoxicity in cultured rat cerebral cortical neurons and memory impairment in mice. Exposure of cultured neurons to $10{\mu}M$ $A\beta$ (25-35) for 24 h induced a neuronal cell death, which was measured by a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay and Hoechst 33342 staining. KM (10, 30 and $50{\mu}g/ml$) significantly inhibited the $A\beta$ (25-35)-induced apoptotic neuronal death. KM ($50{\mu}g/ml$) inhibited 10 μM Aβ (25-35)-induced elevation of intracellular calcium concentration ([Ca2+]i), which was measured by a fluorescent dye, Fluo-4 AM. Glutamate release into medium and generation of reactive oxygen species (ROS) induced by $10{\mu}M$ $A\beta$ (25-35) were also inhibited by KM (10, 30 and $50{\mu}g/ml$). These results suggest that KM may mitigate the $A\beta$ (25-35)-induced neurotoxicity by interfering with the increase of [Ca2+]i and then inhibiting glutamate release and generation of ROS in cultured neurons. In addition, orally administered KM (25 and 50 mg/kg, 7 days) significantly prevented memory impairment induced by intracerebroventricular injection of $A\beta$ (25-35) (8 nmol). Taken together, it is suggested that anti-dementia effect of KM is due to its neuroprotective effect against $A\beta$ (25-35)-induced neurotoxicity and that KM may have therapeutic role in prevention of the progression of Alzheimer's disease.

Kainic Acid-induced Neuronal Death is Attenuated by Aminoguanidine but Aggravated by L-NAME in Mouse Hippocampus

  • Byun, Jong-Seon;Lee, Sang-Hyun;Jeon, Seong-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Young-Myeong;Kim, Myong-Jo;Chun, Wan-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.4
    • /
    • pp.265-271
    • /
    • 2009
  • Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice ($iNOS^{-1-}$) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

Curcumin Attenuates Gliall Cell Activation But Cannot Suppress Hippocampal CA3 Neuronal Cell Death in i.c.v. Kanic Acid Injection Model

  • Cho, Jae-Young;Kong, Pil-Jae;Chun, Wan-Joo;Moon, Yeo-Ok;Park, Yee-Tae;Lim, So-Young;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.307-310
    • /
    • 2003
  • Kainic acid (KA) is a structural analogue of glutamate that interacts with specific presynaptic and postsynaptic receptors to potentiate the release and excitatory actions of glutamate. Systemic or intracerebroventricular (i.c.v.) administration of KA to experimental animals elicits multifocal seizures with a predominantly limbic localization, and results in neuronal death of cornu ammonia 1 (CA1), reactive gliosis and biochemical changes in the hippocampus and other limbic structures. Several lines of evidence suggest that reactive oxygen species (ROS) play a pivotal role in the pathogenesis of excitotoxic death by KA. Curcumin has been known to possess anti-oxidative and anti-inflammatory activities. In this study, the effects of curcumin on KA induced hippocampal cell death, reactive gliosis and biochemical changes in reactive glia were investigated by immunohistochemical methods. Our data demonstrated that curcumin attenuated KA-induced astroglial and microglial activation although it did not protect KA-induced hippocampal cell death.

cAMP/PKA Agonist Restores the Fasting-Induced Down-Regulation of nNOS Expression in the Paraventricular Nucleus

  • Yoo, Sang-Bae;Lee, Seoul;Lee, Joo-Young;Kim, Bom-Taeck;Lee, Jong-Ho;Jahng, Jeong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.5
    • /
    • pp.333-337
    • /
    • 2012
  • Gene expression of neuronal nitric oxide synthase (nNOS) changes in the hypothalamic paraventricular nucleus (PVN) depending on feeding conditions, which is decreased during food deprivation and restored by refeeding, and phosphorylated cAMP response element binding protein (pCREB) was suggested to play a role in its regulation. This study was conducted to examine if the fasting-induced down-regulation of the PVN-nNOS expression is restored by activation of cAMP-dependent protein kinase A (cAMP/PKA) pathway. Freely moving rats received intracerebroventricular (icv) injection of cAMP/PKA activator Sp-cAMP (40 nmol) or vehicle (sterilized saline) following 48 h of food deprivation. One hour after drug injections, rats were transcardially perfused with 4% paraformaldehyde, and the PVN tissues were processed for nNOS or pCREB immunohistochemistry. Sp-cAMP significantly increased not only nNOS but also pCREB immunoreactivities in the PVN of food deprived rats. Fastinginduced down-regulation of the PVN-nNOS was restored by 1 h after the icv Sp-cAMP. Results suggest that cAMP/PKA pathway may mediate the regulation of the PVN-nNOS expression depending on different feeding conditions.

Effect of Brain Angiotensin II Receptor Antagonists and Antisense Oligonucleotide on Drinking and Renal Renin in Rats

  • Cho, Hyeon-Kyeong;Yang, Eun-Kyoung;Han, Hee-Suk;Lee, Won-Jung;Phillips, M. Ian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.2
    • /
    • pp.137-142
    • /
    • 2000
  • The physiological roles of brain angiotensin II in mediating water deprivation-induced drinking and in regulating renal renin release were assessed in male Sprague-Dawley rats. Specific $AT_1$ receptor antagonists, losartan and SK 1080, and antisense oligonucleotide (AS-ODN) directed to $AT_1$ receptor mRNA were intracerebroventricularly (i.c.v.) administered in conscious unrestrained rats. When water was given 20 min after i.c.v. injection of $AT_1$ receptor antagonists in 48-h water-deprived rats, losartan and SK 1080 produced approximatly 20% and 50% decrease in 1-h water intake, respectively. In contrast, i.c.v. treatment of the AS-ODN to $AT_1$ receptor mRNA for 24-h did not alter 1-h water intake in 24-h water-deprived rats, but prevented the increase in overnight water intake after 24-h water-deprivation. Six-day i.c.v. treatment of AS-ODN did not alter either the basal plasma renin concentration or renal cortical levels of renin and renin mRNA. The present results suggest that endogenous brain Ang II plays an important role in thirst and water intake through $AT_1$ receptors, but further studies are required to elucidate its regulatory role in renal renin synthesis.

  • PDF

Inhibitory Effect of an Ethanol Extract Mixture of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix on Amyloid β Protein (25-35)-Induced Neurotoxicity (머루전초, 독활전초, 감초 혼합추출물의 Amyloid β Protein (25-35) 유발 신경 독성에 대한 억제효과)

  • Jang, Ji Yeon;Seong, Yeon Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • The present study investigated an ethanol extract (SSB) of a mixture of three medicinal plants of Vitis amurensis, Aralia cordata, and Glycyrrhizae radix for possible neuroprotective effects on neurotoxicity induced by Amyloid ${\beta}$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $15{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-30{\mu}g/m{\ell}$, SSB inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in cultured cortical neurons. Memory impairment and increase of acetylcholinesterase activity induced by intracerebroventricular injection of mice with 16 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with SSB (25, 50 and 100 mg/kg, p.o., for 8 days). From these results, it is suggested that antidementia effect of SSB is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that SSB may have a therapeutic role in preventing the progression of Alzheimer's disease.

Effect of Sulfonylureas Administered Centrally on the Blood Glucose Level in Immobilization Stress Model

  • Sharma, Naveen;Sim, Yun-Beom;Park, Soo-Hyun;Lim, Su-Min;Kim, Sung-Su;Jung, Jun-Sub;Hong, Jae-Seung;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.197-202
    • /
    • 2015
  • Sulfonylureas are widely used as an antidiabetic drug. In the present study, the effects of sulfonylurea administered supraspinally on immobilization stress-induced blood glucose level were studied in ICR mice. Mice were once enforced into immobilization stress for 30 min and returned to the cage. The blood glucose level was measured 30, 60, and 120 min after immobilization stress initiation. We found that intracerebroventricular (i.c.v.) injection with $30{\mu}g$ of glyburide, glipizide, glimepiride or tolazamide attenuated the increased blood glucose level induced by immobilization stress. Immobilization stress causes an elevation of the blood corticosterone and insulin levels. Sulfonylureas pretreated i.c.v. caused a further elevation of the blood corticosterone level when mice were forced into the stress. In addition, sulfonylureas pretreated i.c.v. alone caused an elevation of the plasma insulin level. Furthermore, immobilization stress-induced insulin level was reduced by i.c.v. pretreated sulfonylureas. Our results suggest that lowering effect of sulfonylureas administered supraspinally against immobilization stress-induced increase of the blood glucose level appears to be primarily mediated via elevation of the plasma insulin level.

Ethanol Extract of Three Plants of Curcuma longae Radix, Phellinus linteus, and Scutellariae Radix Inhibits Amyloid $\beta$ Protein (25-35)-Induced Neurotoxicity in Cultured Neurons and Memory Impairment in Mice (Curcuma longae Radix, Phellinus linteus 및 Scutellariae Radix 혼합추출물의 $A{\beta}$ (25-35) 유도 배양신경세포독성 및 마우스기억손상 억제효과)

  • Kim, Joo-Youn;Jeong, Ha-Yeon;Ban, Ju-Yeon;Yoo, Jae-Kuk;Bae, Ki-Hwan;Seong, Yeon-Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.6
    • /
    • pp.388-396
    • /
    • 2009
  • The present study investigated an ethanol extract (HS0608) of a mixture of three medicinal plants of Curcuma longae radix, Phellinus linteus, and Scutellariae radix for possible neuroprotective effects on neurotoxicity induced by amyloid $\beta$ protein ($A{\beta}$) (25-35) in cultured rat cortical neurons and antidementia activity in mice. Exposure of cultured cortical neurons to $10\;{\mu}M$ $A{\beta}$ (25-35) for 36 h induced neuronal apoptotic death. At $1-50\;{\mu}g/m{\ell}$, HS0608 inhibited neuronal death, elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), and generation of reactive oxygen species (ROS) induced by $A{\beta}$ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of ICR mice with 15 nmol $A{\beta}$ (25-35) was inhibited by chronic treatment with HS0608 (25, 50 and 100 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. From these results, we suggest that the antidementia effect of HS0608 is due to its neuroprotective effect against $A{\beta}$ (25-35)-induced neurotoxicity and that HS0608 may have a therapeutic role in preventing the progression of Alzheimer's disease.