• Title/Summary/Keyword: Intracellular symbiosis

Search Result 4, Processing Time 0.017 seconds

Human anti-peptidoglycan-IgG-mediated opsonophagocytosis is controlled by calcium mobilization in phorbol myristate acetate-treated U937 cells

  • Kim, Min Jung;Rah, So-Young;An, Jang-Hyun;Kurokawa, Kenji;Kim, Uh-Hyun;Lee, Bok Luel
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.36-41
    • /
    • 2015
  • Recently, we demonstrated that human serum amyloid P component (SAP) specifically recognizes exposed bacterial peptidoglycan (PGN) of wall teichoic acid (WTA)-deficient Staphylococcus aureus ${\Delta}$tagO mutant cells and then induces complement-independent phagocytosis. In our preliminary experiments, we found the existence of human serum immunoglobulins that recognize S. aureus PGN (anti-PGNIgGs), which may be involved in complement-dependent opsonophagocytosis against infected S. aureus cells. We assumed that purified serum anti-PGN-IgGs and S. aureus ${\Delta}$tagO mutant cells are good tools to study the molecular mechanism of anti-PGN-IgG-mediated phagocytosis. Therefore, we tried to identify the intracellular molecule(s) that is involved in the anti-PGN-IgG-mediated phagocytosis using purified human serum anti-PGN-IgGs and different S. aureus mutant cells. Here, we show that anti-PGN-IgG-mediated phagocytosis in phorbol myristate acetate-treated U937 cells is mediated by $Ca^{2+}$ release from intracellular $Ca^{2+}$ stores and anti-PGN-IgGdependent $Ca^{2+}$ mobilization is controlled via a phospholipase C${\gamma}$-2-mediated pathway.

Symbiotic Microorganisms in Aphids (Homoptera, Insecta): A Secret of One Thriving Insect Group

  • Ishikawa, Hajime
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.163-177
    • /
    • 2001
  • Most, if not all, aphids harbor intracellular bacterial symbionts, called Buchnera, in their bacteriocytes, huge cells differentiated for this purpose. The association between Buchnera and aphids is so intimate, mutualistic and obligate that neither of them can any longer reproduce independently. Buchnera are vertically transmitted through generations of the host insects. Evidence suggests that Buchnera were acquired by a common ancestor of aphids 160-280 million years ago, and have been diversified, since then, in parallel with their aphid hosts. Molecular phylogenetic analyses indicate that Buchnera belong to the g subdivision of the Proteobacteria. Although Buchnera are close relatives of Escherichia coli, they contain move than 100 genomic copies per cell, and their genome size is only one seventh that of E. coli. The complete genome sequence of Buchnera revealed that their gene repertoire is quite different from those of parasitic bacteria such as Mycoplasma, Rickettsia and Chlamydia, though their genome sizes have been reduced to a similar extent. Whereas these parasitic bacteria have lost most genes for the biosynthesis of amino acids, Buchnera retain many of them. In particular, Buchnera's gene repertoire is characteristic in the richness of the genes for the biosynthesis of essential amino acids that the eukaryotic hosts are not able to synthesize, reflecting a nutritional role played by these symbionts. Buchnera, when housed in the bacteriocyte, selectively synthesize a large amount of symbionin, which is a homolog of GroEL, the major stress protein of E. coli. Symbionin not only functions as molecular chaperone, like GroEL, but also has evolutionarily acquired the phosphotransferase activity through amino acid substitutions. Aphids usually profit from Buchnera's fuction as a nutritional supplier and, when faced with an emergency, consume the biomass of Buchnera cells as nutrient reserves.

  • PDF

Wolbachia-mediated Reproductive Alterations in Arthropod Hosts and its use for Biocontrol Program (볼바키아 세균에 의한 절지동물 기주의 생식적 변화와 생물적방제 프로그램에 이용 방안)

  • Rostami, Elahe;Madadi, Hossein;Abbasipour, Habib;Sivaramakrishnan, Shiva
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.177-188
    • /
    • 2016
  • The alpha-proteobacterium Wolbachia is one of the most important intracellular symbionts of arthropods. This Gram-negative bacterium is involved in many biological processes and is currently considered as a potential tool for biological control. Wolbachia is a cytoplasmic bacterium, maternally transferred through generations, and to facilitate its success, it has evolved several strategies that manipulate its host reproductive system to increase the number of infected individuals in the host population. The variety of Wolbachia was first recognized using genes wsp, 16S rRNA, ftsZ, gltA and groEL as molecular markers while strain genotypes of Wolbachia are determined of Multilocus sequence typing (MLST) and sequence of amino acid in region, hyper variable regions (HVRs) in protein WSP. Possible uses of the bacteria and their predominant phenotypes in control programs for agricultural pests and human disease vectors have been considered. Phenotypes are known to induce cytoplasmic incompatibility (CI), parthenogenesis induction (PI), feminization (F) and male killing (MK). Finally, applications of the bacterium in control programs of agricultural and medical insect pests have been discussed.