• 제목/요약/키워드: Intracellular calcium concentration

검색결과 208건 처리시간 0.026초

Ginsenoside Rgi is an Anti-apoptotic Agent

  • Zhang, Jun-Tian;Li, Jun-Qing
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.12-20
    • /
    • 1998
  • Primary neuronal culture was studied for observing effect of ginsenoside Rgl (Rgl) on serum-free medium induced apoptosis. Results showed that Rgl at concentration of 1 umol$.$ L-1 and 10 umol$.$L-1 could inhibit apoptosis, decrease intracellular calcium concentration in cultured cortical neurons, enhance SOD activity in both aged rat cortex and cultured cortical neurons, scavenge cytotoxic oxygen free radicals, decrease NO content and NOS activity in aged rat cortex and cultured cortical neurons, increase bel-2 gene expression in rat brain. These results provided new data for elucidating the anti-aging effect of Rgi. Rgl is considered to be a useful drug for treatment of Alzheimer's disease and brain aging.

  • PDF

The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

  • Kim, June-Bum;Kim, Sung-Jo;Kang, Sun-Yang;Yi, Jin Woong;Kim, Seung-Min
    • Clinical and Experimental Pediatrics
    • /
    • 제57권10호
    • /
    • pp.445-450
    • /
    • 2014
  • Purpose: Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium ($K_{Ca}$) channel genes in HOKPP patients. Methods: We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results: Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the $K_{Ca}$ channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes $K_{Ca}$1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion: These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.

Bupivacaine-induced Vasodilation Is Mediated by Decreased Calcium Sensitization in Isolated Endothelium-denuded Rat Aortas Precontracted with Phenylephrine

  • Ok, Seong Ho;Bae, Sung Il;Kwon, Seong Chun;Park, Jung Chul;Kim, Woo Chan;Park, Kyeong Eon;Shin, Il Woo;Lee, Heon Keun;Chung, Young Kyun;Choi, Mun Jeoung;Sohn, Ju Tae
    • The Korean Journal of Pain
    • /
    • 제27권3호
    • /
    • pp.229-238
    • /
    • 2014
  • Background: A toxic dose of bupivacaine produces vasodilation in isolated aortas. The goal of this in vitro study was to investigate the cellular mechanism associated with bupivacaine-induced vasodilation in isolated endothelium-denuded rat aortas precontracted with phenylephrine. Methods: Isolated endothelium-denuded rat aortas were suspended for isometric tension recordings. The effects of nifedipine, verapamil, iberiotoxin, 4-aminopyridine, barium chloride, and glibenclamide on bupivacaine concentration-response curves were assessed in endothelium-denuded aortas precontracted with phenylephrine. The effect of phenylephrine and KCl used for precontraction on bupivacaine-induced concentration-response curves was assessed. The effects of verapamil on phenylephrine concentration-response curves were assessed. The effects of bupivacaine on the intracellular calcium concentration ($[Ca^{2+}]_i$) and tension in aortas precontracted with phenylephrine were measured simultaneously with the acetoxymethyl ester of a fura-2-loaded aortic strip. Results: Pretreatment with potassium channel inhibitors had no effect on bupivacaine-induced relaxation in the endothelium-denuded aortas precontracted with phenylephrine, whereas verapamil or nifedipine attenuated bupivacaine-induced relaxation. The magnitude of the bupivacaine-induced relaxation was enhanced in the 100mM KCl-induced precontracted aortas compared with the phenylephrine-induced precontracted aortas. Verapamil attenuated the phenylephrine-induced contraction. The magnitude of the bupivacaine-induced relaxation was higher than that of the bupivacaine-induced $[Ca^{2+}]_i$ decrease in the aortas precontracted with phenylephrine. Conclusions: Taken together, these results suggest that toxic-dose bupivacaine-induced vasodilation appears to be mediated by decreased calcium sensitization in endothelium-denuded aortas precontracted with phenylephrine. In addition, potassium channel inhibitors had no effect on bupivacaine-induced relaxation. Toxic-dose bupivacaine-induced vasodilation may be partially associated with the inhibitory effect of voltage-operated calcium channels.

세포 내 칼슐 농도의 변화에 따른 간헐적 정수압이 세포 부착력에 미치는 영향 (Contribution of intermittent hydrostatic pressure to the cell adhesive forces throught the changes in intracelluar $Ca^{2+}$ concentration)

  • 김동화;김영직;신지원;신정욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1580-1581
    • /
    • 2008
  • We investigated the effects of intermittent hydrostatic pressure with various duration of resting period on changes in calcium ($Ca^{2+}$) concentration and adhesive forces of cells on substrates. The quantitive adhesive forces of cells were measured under various resting periods. When the pressure applied to the cells, the concentration of $Ca^{2+}$ increased. Under intermittent hydrostatic pressure, the concentration of $Ca^{2+}$ was maintained under a resting period of 15 min, while it was not decreased with other resting periods of less than 15 min. With a resting period of 15 min, the magnitudes of adhesive forces were significantly increase. In addition, the adhesive forces were measured with and without $Ca^{2+}$ chelating agents to evaluate the effect of $Ca^{2+}$ on cell adhesiveness. When $Ca^{2+}$ ions were chelated, the adhesive forces dramatically decreased, even under intermittent hydrostatic pressure. We conclude that $Ca^{2+}$ plays an crucial role in modulating the adhesive forces of cells, and that the concentration of $Ca^{2+}$ can be increased by intermittent hydrostatic stimuli.

  • PDF

Bacterial PAMPs and Allergens Trigger Increase in $[Ca^{2+}]_i$-induced Cytokine Expression in Human PDL Fibroblasts

  • Son, Ga-Yeon;Shin, Dong Min;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.291-297
    • /
    • 2015
  • An oral environment is constantly exposed to environmental factors and microorganisms. The periodontal ligament (PDL) fibroblasts within this environment are subject to bacterial infection and allergic reaction. However, how these condition affect PDL fibroblasts has yet to be elucidated. PDL fibroblasts were isolated from healthy donors. We examined using reverse transcription-polymerase chain reaction and measuring the intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$). This study investigated the receptors activated by exogenous bacterial pathogens (Lipopolysaccharide and peptidoglycan) and allergens (German cockroach extract and house dust mite) as well as these pathogenic mediators-induced effects on the intracellular $Ca^{2+}$ signaling in human PDL fibroblasts. Moreover, we evaluated the expression of pro-inflammatory cytokines (interleukin (IL)-$1{\beta}$, IL-6, and IL-8) and bone remodeling mediators (receptor activator of NF-${\kappa}B$ ligand and osteoprotegerin) and intracellular $Ca^{2+}$-involved effect. Bacterial pathogens and allergic mediators induced increased expression of pro-inflammatory cytokines, and these results are dependent on intracellular $Ca^{2+}$. However, bacterial pathogens and allergic mediators did not lead to increased expression of bone remodeling mediators, except lipopolysaccharide-induced effect on receptor activator of NF-${\kappa}B$ ligand expression. These experiments provide evidence that a pathogens and allergens-induced increase in $[Ca^{2+}]_i$ affects the inflammatory response in human PDL fibroblasts.

Structure-Activity Relationships of Dimethylsphingosine (DMS) Derivatives and their Effects on Intracellular pH and $Ca^{2+}$ in the U937 Monocyte Cell Line

  • Chang, Young-Ja;Lee, Yun-Kyung;Lee, Eun-Hee;Park, Jeong-Ju;Chung, Sung-Kee;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • 제29권8호
    • /
    • pp.657-665
    • /
    • 2006
  • We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and $Ca^{2+}$ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and $Ca^{2+}$ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and $Ca^{2+}$, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and $Ca^{2+}$-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.

연수 신경세포 배양에서 세로토닌 분비에 대한 Cholecystokinin의 작용 (Effect of Cholecystokinin on Serotonin Release from Cultured Neurons of Fetal Rat Medulla Oblongata)

  • 송동근;조현미;이태희;서홍원;김영희
    • 대한약리학회지
    • /
    • 제31권1호
    • /
    • pp.11-15
    • /
    • 1995
  • 연수의 세로토닌 신경계는 내재성 하행성 동통 억제계 (endogenous descending pain inhibitory system) 에 있어서 중추적인 역할을 하고 있다. 연수의 세로토닌 신경세포에 대한 cholecystokinin (CCK) 및 second messenger systems에 작용하는 약물들의 작용을 알아보기 위하여, 쥐의 태자 (태생 14일) 로부터 연수를 분리하여 10동안 배양한 후 5-hydroxytryptamine (5-HT)의 분비에 대한 cholecystokinin (CCK) 및 second messenger systems에 작용하는 약물의 영향을 연구하였다. 배양 10일된 세포에 여러 neuropeptide들을 $10{\mu}M$ 농도로 48 시간동안 자극한 결과, CCK 와 substance P에 의하여 5-HT의 분비가 증가됨을 관찰하였다. Somatostatin, proctolin, thyrotropin releasing hormone, 및 interleukin-6 은 5-HT의 분비에 있어서 아무런 영향이 없었다. 어떠한 second messenger가 CCK에 의한 5-HT 분비에 연관되어 있나를 알아보기 위하여 calcium channel 봉쇄제인 nimodipine, 그리고 calmodulin 길항제인 calmidazolium의 영향을 살펴본 결과 nimodipine ($1{\mu}M$)은 거의 완전하게, 그리고 calmidazolium ($1{\mu}M$)은 부분적으로 유의하게 CCK에 의한 5-HT의 분비를 억제하였다. 또한 adenyl cyclase의 활성도를 높이는 forskolin ($5{\mu}M$)은 5-HT의 분비를 증가시켰지만 protein kinase C(PKC)를 활성화시키는 phorbol myristate acetate (PMA)는 $2{\mu}M$ 농도에서 5-HT의 분비에 아무런 영향을 미치지 아니하였다. 이상의 연구결과, calcium channel을 통한 calcium influx와 세포내 calmodulin이 CCK에 의한 5-HT분비 증가에 있어서 중요한 역할을 함을 제시한다. 또한, 5-HT의 분비에 있어서 cyclic AMP system이 중요한 역할을 하나, PKC system은 5-HT의 분비에 연관이 없음을 제시하고 있다.

  • PDF

DU-145 전립선 암세포에 있어서 mifepristone과 tamoxifen이 칼슘조절에 미치는 영향 (Effects of Mifepristone and Tamoxifen on Calcium Modulation in DU-145 Prostate Cancer Cells)

  • 김여름;김병기
    • 생명과학회지
    • /
    • 제20권9호
    • /
    • pp.1324-1331
    • /
    • 2010
  • Mifepristone (MIF)와 Tamoxifen (TAM)은 각각 전립선암과 유방암치료제로 오랫동안 사용되고 있다. MIF는 안드로겐수용체(AR) 양성인 세포와 음성이 세포 모두에서 세포사멸을 유도하며, TAM 은, 리간드-수용체작용 기작의 다양한 특성에 의하여 에스트로겐(ER) 양성인 세포뿐 만 아니라 다른 종류의 암세포에서도 세포사멸을 유도하는 것으로 알려져 있다. 본 연구에서는 AR 음성인 DU-145 전립선암세포에 있어서, MIF와 TAM의 세포독성이 세포 내 칼슘농도 변화에 기인된 세포사멸기작에 의한 것임을 보여준다. MIF와 TAM을 처리시 세포성장은 농도와 시간의존적으로 감소하였으며, confocal laser scanning microscopy (CLSM)과 fluorescence-activated cell sorting (FASC)로 세포를 분석한 결과 각각 MIF와 TAM을 2일간 처리한 세포에서 세포사멸이 진행되는 것을 관찰하였다. 세포독성효과를 비교했을 경우, TAM이 MIF 보다 강하게 작용하였다. MIF와 TAM을 처리한 세포 내 칼슘변화 측정 시, 칼슘농도 또한 처리 약물의 농도와 시간 의존적으로 증가하였다. 1.5 mM 칼슘배지와 칼슘제거된 배지에서의 실험결과를 비교한 바, 세포 내 칼슘증가는 외부로부터의 유입에 의한 것으로 생각된다. 세포독성효과와 마찬가지로 칼슘증대 효과 역시 TAM에서 뚜렷하게 나타났다. 수용체 매개 세포사멸기작의 초기에 관여하는 procaspase-8은 MIF 처리 시 뚜렷이 활성화 되었으나, TAM의 경우 활성화가 MIF의 경우에 비해 강하지 못하였다. 그러나, 세포사멸의 중추적인 역할을 하는 caspase-3은 TAM 을 처리한 세포에 있어서 활성 정도가 훨씬 높았다. 세포사멸과정의 중요한 조절 단백질인 Bcl-2 그룹단백질의 발현을 조사해 본 결과, 세포사멸 억제단백질인 Bcl-2의 발현은 MIF, TAM 처리 시 동일하게 감소한 반면, 촉진단백질인 Bax의 발현은 2-3배 가량 증대되었다. 이상의 결과로 보아 MIF와 TAM은 세포 내 칼슘조절을 통하여 세포사멸을 유도하나, 세포사멸의 초기단계는 MIF와 TAM이 서로 다른 경로를 경유할 가능성이 있는 것으로 생각된다.

Enhanced Calreticulin Expression Promotes Calcium-dependent Apoptosis in Postnatal Cardiomyocytes

  • Lim, Soyeon;Chang, Woochul;Lee, Byoung Kwon;Song, Heesang;Hong, Ja Hyun;Lee, Sunju;Song, Byeong-Wook;Kim, Hye-Jung;Cha, Min-Ji;Jang, Yangsoo;Chung, Namsik;Choi, Soon-Yong;Hwang, Ki-Chul
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.390-396
    • /
    • 2008
  • Calreticulin (CRT) is one of the major $Ca^{2+}$ binding chaperone proteins of the endoplasmic reticulum (ER) and an unusual luminal ER protein. Postnatally elevated expression of CRT leads to impaired development of the cardiac conductive system and may be responsible for the pathology of complete heart block. In this study, the molecular mechanisms that affect $Ca^{2+}$-dependent signal cascades were investigated using CRT-overexpressing cardiomyocytes. In particular, we asked whether calreticulin plays a critical role in the activation of $Ca^{2+}$-dependent apoptosis. In the cells overexpressing CRT, the intracellular calcium concentration was significantly increased and the activity of PKC and level of SECAR2a mRNA were reduced. Phosphorylation of Akt and ERKs decreased compared to control. In addition the activity of the anti-apoptotic factor, Bcl-2, was decreased and the activities of pro-apoptotic factor, Bax, p53 and caspase 8 were increased, leading to a dramatic augmentation of caspase 3 activity. Our results suggest that enhanced CRT expression in mature cardiomyocytes disrupts intracellular calcium regulation, leading to calcium-dependent apoptosis.

Effects of L-trans-pyrrolidine-2,4-dicarboxylate, a Glutamate Uptake Inhibitor, on NMDA Receptor-mediated Calcium Influx and Extracellular Glutamate Accumulation in Cultured Cerebellar Granule Neurons

  • Oh, Seikwan;Shin, Chang-Sik;Patrick-P. McCaslin;Seong, Yeon-Hee;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 1997
  • Glutamate uptake inhibitor, L-trans-pyrrolidine-2, 4-dicarboxylate (PDC, $20{\mu}M$) elevated basal and N-methyl-D-aspartate (NMDA, $100{\mu}M$)-induced extracellular glutamate accumulation, while it did not augment kainate $100{\mu}M$-induced glutamate accumulation in cultured cerebellar granule neurons. However, pretreatment with PDC for 1 h significantly reduced NMDA-induced glutamate accumulation, but did not affect kainate-induced response. Pretreatment with glutamate $(5{\mu}M)$ for 1 h also reduced NMDA-induced glutamate accumulation, but did not kainate-induced response. Upon a brief application (3-10 min), PDC did neither induce elevation of intracellular calcium concentration $([Ca^{2+}]_i)$ nor modulate NMDA-indLiced $[Ca^{2+}]_1$ elevation. Pretreatment with PDC for 1 h reduced NMDA-induced $[Ca^{2+}]_1$ elevation, but it did not reduce kainate-induced $[Ca^{2+}]_1$ elevation. These results suggest that glutamate concentration in synaptic clefts of neurana cells is increased by prolonged exposure (1 h) of the cells to PDC, and the accumulated glutamate subsequently induces selective desensitization of NMDA receptor.

  • PDF