• Title/Summary/Keyword: Intertidal

Search Result 626, Processing Time 0.027 seconds

Reproductive Phenology of Four Korean Seagrasses, Zostera caespitosa, Z. caulescens, Z. japonica and Z. marina (한국산 해초 포기거머리말, 수거머리말, 애기거머리말과 거머리말의 생물계절학)

  • Lee, Sung-Mi;Lee, Sang-Yong;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.125-133
    • /
    • 2005
  • This study described the phonology and reproductive potential of four species of Korean seagrasses, Zostera caespitosa, Z. caulescem, Z. Japonica and Z. marina. Z. caespitosa and Z. caulescens sampled from a mixed stand at the subtidal area of Yulpo Bay, Geojedo of the South Sea of Korea in November 2002 and August 2003. Z japonica and Z. marina occurred at the depth between the middle intertidal and shallow subtidal (<1m below mean sea level) of Seungbongdo (in Yellow Sea) samples collected in February and October 2003. The sexual reproductive phase of the four Zostera species was apparently different in timing of flowering, reproductive period, fruiting and seed maturing. Z. caespitosa flowered from February to early May $(10-16^{\circ}C)$, and its seed production completed in early May. The reproductive shoots of Z. caulescens began to appear in January $(9^{\circ}C)$, and its flowering followed from February to June $(10-19^{\circ}C)$. The flowers of Z. japonica were observed from July to September $(18-22^{\circ}C)$, and its seeds matured from August to September. The most commonly I marina flowered from April to August $(7-21^{\circ}C)$ and developed into seeds in July. Z. caulescens, the largest plant, had the highest number of seeds per shoot and longest spadix length. Z. marina, which was intermediate In size, recorded the highest reproductive potential. The study indicates that the reproductive phase and potential of the four species of seagrass from Korea are highly related to water temperature, and the populations of these species show a perennial lifespan with a low sexual reproductive input.

Trace Metals (Mn, Zn, Cd, Pb) in the Shell of the Marine Gastropod, Littorina brevicula on Coastal Area, Korea (전국 연안의 총알고둥(Littorina brevicula: Gastropod) 패각 중 금속 원소(Mn, Zn, Cd, Pb)의 분포 특성)

  • Lim, Chae-Ryeol;Kang, Seong-Gil;Lee, Chang-Bok;Koh, Chul-Hwan;Choi, Man-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.119-130
    • /
    • 2000
  • Mn, Zn, Cd and Pb in shells of Littorina brevicula, which lives ubiquitously in intertidal zone around the Korean coast, were analyzed to determine the relationship between metal levels in its shell, ambient seawater and its tissue. Periwinkles and seawater samples were collected from 38 sites along the Korean coast in January 1997. Mn contents in shells of this organism show the range of 7.0 ${\mu}g$/g-211 ${\mu}g$/g (mean 59 ${\mu}g$/g) and are the lowest in northern east coast but high in western south and west coast. Close relationship between Mn contents in shells and metal levels both in seawater and in tissues indicates that Mn in shell might be incorporated from ambient seawater by a biological process. Although the contents of Cd in shells did not reflect the distribution of total Cd in seawaters and they were very low compared to those in tissues, they followed spatial gradient of contents in tissues. However, the spatial distribution of Zn contents in shells accords neither ambient seawater nor tissues, while it is negatively correlated with the contents of Na in shells. This fact suggests that Zn contents might be controlled by salinity of ambient seawater. On the contrary, Zn contents in highly polluted sites near Onsan Bay show generally higher levels than other sites. The contents of Pb show the range of 0.1 ${\mu}g$/g-17.5 ${\mu}g$/g (mean 1.01 ${\mu}g$/g) and the highest in sites near Onsan Bay. Although the spatial distribution of shell Pb does not follow those of tissue, Pb in shells of Littorina brevicula may be controlled both by shell secretion process and by Pb levels in ambient seawater because the contents of Pb in the shell decrease steadily with growth and vary with levels of Pb in ambient seawater.

  • PDF

The Cross-sectional Mass Flux Observation at Yeomha Channel, Gyeonggi Bay at Spring Tide During Dry and Flood Season (단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사)

  • Lee, Dong-Hwan;Yoon, Byung-Il;Kim, Jong-Wook;Gu, Bon-Ho;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-25
    • /
    • 2012
  • To calculate the total mass flux that change in dry and flood season in the Yeomha Channel of Gyeonggi Bay, the 13 hour bottom tracking observation was performed from the southern extremity. The value of the total mass flux(Lagrange flux) was calculated as the sum of the Eulerian flux value and stroke drift value and the tidal residual flow was harmonically analyzed through the least-squares method. Moreover, the average during the tidal cycle is essential to calculate the mass flux and the tidal residual flow and there is the need to equate the grid of repeatedly observed data. Nevertheless, due to the great differences in the studied region, the number of vertical grid tends to change according to time and since the horizontal grid differs according to the transport speed of the ship as a characteristic of the bottom tracking observation, differences occur in the horizontal and vertical grid for each hour. Hence, the present study has vertically and horizontally normalized(sigma coordinate) to equate the grid per each hour. When compared to the z-level coordinate system, the Sigma coordinate system was evaluated to have no irrationalities in data analysis with 5% of error. As a result of the analysis, the tidal residual flow displayed the flow pattern of sagging in the both ends in the main waterway direction of dry season. During flood season, it was confirmed that the tidal residual flow was vertical 2-layer flow. As a result of the total mass flux, the ebb properties of 359 cm/s and 261 cm/s were observed during dry and flood season, respectively. The total mass flux was moving the intertidal region between Youngjong-do and Ganghwa-do.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

Geochemical Variation of Authigenic Glauconite from Continental Shelf of the Yellow Sea, off the SW Korea (한반도 남서부, 황해 대륙붕에서 자생하는 해록석의 지구화학적 변화)

  • Lee, Chan Hee;Lee, Sung-Rock;Lee, Chi-Won;Choi, Suck-Won
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.303-312
    • /
    • 1997
  • The massive, fractured and porous-type of glauconite, which is subdivided by surface morphology, occur in subtidal sand and semiconsolidated intertidal sand/mud from continental shelf of the southeastern Yellow Sea. This area is presumed to be a part of Holocene transgressive tidal systems tract. The glauconite, pellet-like grains with diameter of 0.1 to 1 mm, is scattered in surface sand sediments. Results of X-ray diffraction data of the minerals are monoclinic with $a=5.242{\AA}$, $b=9.059{\AA}$, $c=10.163{\AA}$, ${\beta}=100.5^{\circ}$, $V=474.53{\AA}^3$. Thermal treatments on the oriented glauconite increase the X-ray diffraction intensity near $10{\AA}$ (001), suggesting the presence of some expandable layers. Specific gravity of the glauconite is $2.60{\pm}0.45gm/cc$ on the basis of chemical composition and unit-cell dimensions. Based on $O_{10}(OH)_2$, chemical composition of glauconites, octahedral Fe content ranges from 1.19 to 2.06 atoms, corresponding octahedral AI is 0.18 to 0.76 atoms, which progressively substitute Fe for AI with increasing from porous to massive-type. The Mg content ranges from 0.35 to 0.54 atoms, and shows higher with increasing Al contents. A systematic increase of interlayer K from 0.34 to 0.71 is also observed with apparent increases from porous to massive-type, and related to a proportion of expandable layers. The clay preserved in glauconite, which is recognized as ordered/disordered (massive to fractured-type). The interstratified illite/smectite (porous-type), contains 7 to 27 % expandable layers. The glauconite seems to originate from post depositional authigenic growth in reducing environments promoted by the dissolution of clay minerals and biogenic debris.

  • PDF

Gonadal Development and Reproductive Cycle of the Sand Snail, Umbonium thomasi (서해비단고둥 (Umbonium thomasi)의 생식소 발달과 생식주기)

  • Lee Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.6
    • /
    • pp.702-708
    • /
    • 2002
  • Although Umboniunm thomasi is one of marine mollusc (Archaeogastropoda: Trochidae) inhabiting the sands in the intertidal zone of the west coast of Korea, aspects of its reproductive biology are still not too well known. Reproductive cycle, gametogenesis, and first sexual maturity of U. thomasi collected at the west coast of Buan-gun, Jeollabuk-do, Korea were investigated monthly from January to December 1999. U. thomasi was dioecious, and an oviparous. The gonad was placed in the rear of the flesh part in the spiral shell. The external colors of the ripe ovary and testis appeared to be green and milk-white or yellowish white, respectively. Meat weigh rate peaked in July ($37.5\%$). And then the value sharply decreased in September ($28.3\%$), thereafter, gradually increased in November ($31.7\%$). Fully ripe oocytes were approximately 100$\~$110 $/mu$m in diameter, and their cytoplasm contained a great number of yolk Branules. Based on the monthly changes of the Bonadal development, gametogenesis, and meat weight rate, the reproductive cycle of U. thomasi could be devided into five successive stages: early active (November to April), late active (February to May), ripe (April to August), spawning (July to October), and recovery (September to February). Gonadal development and spawning were closely related to the seawater temperature, the main spawning occurred in September when the temperature reached above 24.2$^{\circ}C$. Individuals of 4.4 mm and less in shell height could not take part in reproduction in both sexes. Percentages of first sexual maturity of female and male shells ranging from 5.5 to 6.4 mm were $55.0\%$ and $61.9\%$, respectively, and $100\%$ of those over 7.5 mm in shell heights in both sexes participated in the reproduction.

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Analysis of Seabottom and Habitat Environment Characteristics based on Detailed Bathymetry in the Northern Shore of the East Sea(Gyeongpo Beach, Gangneung) (정밀 해저지형 자료 기반 동해 북부 연안(강릉 경포) 서식지 해저면 환경 특성 연구)

  • Lee, Myoung Hoon;Rho, Hyun Soo;Lee, Hee Gab;Park, Chan Hong;Kim, Chang Hwan
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.729-742
    • /
    • 2020
  • In this study, we analyze seabottom conditions and characteristics integrated with topographic data, seafloor mosaic, underwater images and orthophoto(drone) of soft-hard bottom area around the Sib-Ri rock in the northern shore of the East Sea(Gyeongpo Beach, Gangneung). We obtained field survey data around the Sib-Ri rock(about 600 m × 600 m). The Sib-Ri rock is formed by two exposed rocks and surrounding reef. The artificial reef zone made by about 200 ~ 300 structures is shown the western area of the Sib-Ri rock. The underwater rock region is extended from the southwestern area of the exposed the Sib-Ri rock with 9 ~ 11 m depth range. The most broad rocky seabottom area is located in the southwestren area of the Sib-Ri rock with 10 ~ 13 m depth range. The study area were classified into 4 types of seabottom environment based on the analysis of bathymetric data, seafloor mosaics, composition of sediments and images(underwater and drone). The underwater rock zones(Type I) are the most distributed area around the Sib-Ri Rock(about 600 m × 600 m). The soft seabottom area made by sediments layer showed 2 types(Type II: gS(gravelly Sand), Type III: S(Sand)) in the areas between underwater rock zones and western part of the Sib-Ri rock(toward Gyeongpo Beach). The artificial reef zone with a lot of structures is located in the western part of the Sib-Ri rock. Marine algae(about 6 species), Phylum porifera(about 2 species), Phylum echinodermata(about 3 species), Phylum mollusca(about 3 species) and Phylum chordata(about 2 species) are dominant faunal group of underwater image analysis area(about 10 m × 10 m) in the northwestern part of the Sib-Ri rock. The habitat of Phylym mollusca(Lottia dorsuosa, Septifer virgatus) and Phylum arthropoda(Pollicipes mitella, Chthamalus challengeri hoek) appears in the intertidal zone of the Sib-Ri rock. And it is possible to estimate the range and distribution of the habitat based on the integrated study of orthphoto(drone) and bathymetry data. The integrated visualization and mapping techniques using seafloor mosaic images, sediments analysis, underwater images, orthophoto(drone) and topographic data can provide and contribute to figure out the seabottom conditions and characteristics in the shore of the East Sea.

A Study of Habitat Environment Mapping Using Detailed Bathymetry and Seafloor Data in the Southern Shore of the East Sea(Ilsan Beach, Ulsan) (정밀 해저지형 및 해저면 자료를 활용한 동해 남부 연안(울산 일산해변) 생태계 서식지 환경 맵핑 연구)

  • Choi, SoonYoung;Kim, ChangHwan;Kim, WonHyuck;Rho, HyunSoo;Park, ChanHong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.717-731
    • /
    • 2021
  • We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.