• Title/Summary/Keyword: Interspecies Somatic Cell Nuclear Transfer

Search Result 13, Processing Time 0.023 seconds

Choosing a culture medium for SCNT and iSCNT reconstructed embryos: from domestic to wildlife species

  • Cordova, A.;King, W.A.;Mastromonaco, G.F.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.11
    • /
    • pp.24.1-24.14
    • /
    • 2017
  • Over the past decades, in vitro culture media have been developed to successfully support IVF embryo growth in a variety of species. Advanced reproductive technologies, such as somatic cell nuclear transfer (SCNT), challenge us with a new type of embryo, with special nutritional requirements and altered physiology under in vitro conditions. Numerous studies have successfully reconstructed cloned embryos of domestic animals for biomedical research and livestock production. However, studies evaluating suitable culture conditions for SCNT embryos in wildlife species are scarce (for both intra- and interspecies SCNT). Most of the existing studies derive from previous IVF work done in conventional domestic species. Extrapolation to non-domestic species presents significant challenges since we lack information on reproductive processes and embryo development in most wildlife species. Given the challenges in adapting culture media and conditions from IVF to SCNT embryos, developmental competence of SCNT embryos remains low. This review summarizes research efforts to tailor culture media to SCNT embryos and explore the different outcomes in diverse species. It will also consider how these culture media protocols have been extrapolated to wildlife species, most particularly using SCNT as a cutting-edge technical resource to assist in the preservation of endangered species.

Effects of Recipient Oocytes and Electric Stimulation Condition on In Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (수핵난자와 전기적 융합조건이 산양의 이종간 복제수정란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Recipient bovine and porcine oocytes were obtained from slaughterhouse and were matured in vitro according to established protocols. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS and primary fibroblast cultures were established in TCM-199 with 10% FBS. The matured oocytes were dipped in D-PBS plus 10% FBS + 7.5 $\mu$ g/ml cytochalasin B and 0.05M sucrose. Enucleation were accomplished by aspirating the first polar body and partial cytoplasm which containing metaphase II chromosomes using a micropipette with an out diameter of 20∼30 $\mu$m. A Single donor cell was individually transferred into the perivitelline space of each enucleated oocyte. The reconstructed oocytes were electric fusion with 0.3M mannitol fusion medium. After the electrofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. And porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6 ∼8 day at $39^{\circ}C, 5% CO_2 $in air. Interspecies nuclear transfer by recipient bovine oocytes were fused with electric length 1.95 kv/cm and 2.10 kv/cm. There was no significant difference between two electric length in fusion rate(47.7 and 44.6%) and in cleavage rate(41.9 and 54.5%). Using electric length 1.95 kv/cm and 2.10 kv/cm in caprine-porcine NT oocytes, there was also no significant difference between two treatments in fusion rate(51.3 and 46.1%) and in cleavage rate(75.0 and 84.9%). The caprine-bovine NT oocytes fusion rate was lower(P<0.05) in 1 pulse for 60 $\mu$sec(19.3%), than those from 1 pulse for 30 $\mu$sec(50.8%) and 2 pulse for 30 $\mu$sec(31.0%). The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(53.3%) and 2 pulse for 30 $\mu$sec(50.0%), than in 1 pulse for 60 $\mu$sec(18.2%). The caprine-porcine NT oocytes fusion rate was 48.1% in 1 pulse for 30 $\mu$sec, 45.2% in 2 pulse for 30 $\mu$sec and 48.6% in 1 pulse for 60 $\mu$sec. The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(78.4%) and 1 pulse for 60 $\mu$sec(79.4%), than in 2 pulse for 30 $\mu$sec(53.6%). In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer and 30.6% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than parthenotes(37.4%).

Interspecies Nuclear Transfer using Bovine Oocytes Cytoplasm and Somatic Cell Nuclei from Bovine, Porcine, Mouse and Human (소, 돼지, 생쥐, 사람의 체세포와 소 난자를 이용한 이종간 핵 이식)

  • 박세영;김은영;이영재;윤지연;길광수;김선균;이창현;정길생;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.235-243
    • /
    • 2002
  • This study was designed to examine the ability of the bovine (MII) oocytes cytoplasm to support several mitotic cell cycles under the direction of differentiated somatic cell nuclei of bovine, porcine, mouse and human. Bovine GV oocytes were matured in TCM-199 supplemented with 10% FBS. At 20h after IVM, recipient oocytes were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst and their 1st polar body (PB) and MII plate were removed by enucleation micropipette under UV filter. Ear skin samples were obtained by biopsy from an adult bovine, porcine, mouse and human and cultured in 10% FBS added DMEM. Individual fibroblast was anlaysed chromosome number to confirm the specificity of species. Nuclear transferred (NT) units were produced by electrofusion of enucleated bovine oocytes with individual fibroblast. The reconstructed embryos were activated in 5 $\mu$M ionomycin for 5 min followed by 1.9 mM 6-dimethylaminopurine (DMAP) in CR1aa for 3 h. And cleaved NT embryos were cultured in CR1aa medium containing 10% FBS on monolayer of bovine cumulus cell for 8 days. Also NT embryo of 4~8 cell stage was analysed chromosome number to confirm the origin of nuclear transferred somatic cell. The rates of fusion between bovine recipient oocytes and bovine, porcine, mouse and human somatic cells were 70.2%, 70.2%, 72.4% and 63.0%, respectively. Also, their cleavage rates were 60.6%, 63.7%, 54.1% and 62.7%, respectively, there were no differences among them. in vitro development rates into morula and blastocyst were 17.5% and 4.3% in NT embryos from bovine and human fibroblasts, respectively. But NT embryos from porcine and mouse fibroblasts were blocked at 16~32-cell stage. The chromosome number in NT embryos from individual fibroblast was the same as chromosome number of individual species. These results show that bovine MII oocytes cytoplasm has the ability to support several mitotic cell cycles directed by newly introduced nuclear DNA.