• Title/Summary/Keyword: Interrupted Traffic Flow

Search Result 43, Processing Time 0.021 seconds

A Study on Spatial Pattern of Impact Area of Intersection Using Digital Tachograph Data and Traffic Assignment Model (차량 운행기록정보와 통행배정 모형을 이용한 교차로 영향권의 공간적 패턴에 관한 연구)

  • PARK, Seungjun;HONG, Kiman;KIM, Taegyun;SEO, Hyeon;CHO, Joong Rae;HONG, Young Suk
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.155-168
    • /
    • 2018
  • In this study, we studied the directional pattern of entering the intersection from the intersection upstream link prior to predicting short future (such as 5 or 10 minutes) intersection direction traffic volume on the interrupted flow, and examined the possibility of traffic volume prediction using traffic assignment model. The analysis method of this study is to investigate the similarity of patterns by performing cluster analysis with the ratio of traffic volume by intersection direction divided by 2 hours using taxi DTG (Digital Tachograph) data (1 week). Also, for linking with the result of the traffic assignment model, this study compares the impact area of 5 minutes or 10 minutes from the center of the intersection with the analysis result of taxi DTG data. To do this, we have developed an algorithm to set the impact area of intersection, using the taxi DTG data and traffic assignment model. As a result of the analysis, the intersection entry pattern of the taxi is grouped into 12, and the Cubic Clustering Criterion indicating the confidence level of clustering is 6.92. As a result of correlation analysis with the impact area of the traffic assignment model, the correlation coefficient for the impact area of 5 minutes was analyzed as 0.86, and significant results were obtained. However, it was analyzed that the correlation coefficient is slightly lowered to 0.69 in the impact area of 10 minutes from the center of the intersection, but this was due to insufficient accuracy of O/D (Origin/Destination) travel and network data. In future, if accuracy of traffic network and accuracy of O/D traffic by time are improved, it is expected that it will be able to utilize traffic volume data calculated from traffic assignment model when controlling traffic signals at intersections.

Integrated Assessment for Commercialization of Road Hazardous Information Colleted by Commercial Vehicles (사업용 차량 기반 도로위험정보 제공의 상용화를 위한 통합 평가)

  • Yoo, Kyung-su;Chung, Kyungmin;Chae, Chandle
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.30-42
    • /
    • 2021
  • The amount of compensation and the number of cases owing to car damage from pot holes on highways across the country increased by about 4.2 times and 3.5 times, respectively, in 2019 compared to 2015. Due to the increase in damage caused by these road hazards, the Ministry of Land, Infrastructure and Transport is developing technologies and services that can collect road hazard information by using devices on commercial vehicles (DTGs, black boxes, ADASs). In preparation for the development of these technologies, this study conducted an integrated assessment of algorithms developed for interrupted-flow and uninterrupted-flow traffic under three scenarios in order to provide road hazard information to drivers and road managers. As a result, the overall accuracy of the integrated assessment was derived at 81.88%. Errors generated in this integrated assessment reflect only missing data in less than 1 minute, GPS coordinate location and algorithm related errors, taking into account the purpose and assumptions of the assessment. Among them, we derive an accuracy of 90.15%overall by calibrating GPS error data. The results of this study can be used as basic data for improving the accuracy of location-based information collected by commercial vehicles and for policy development.

An Analysis into the Characteristics of the High-pass Transportation Data and Information Processing Measures on Urban Roads (도시부도로에서의 하이패스 교통자료 특성분석 및 정보가공방안)

  • Jung, Min-Chul;Kim, Young-Chan;Kim, Dong-Hyo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.74-83
    • /
    • 2011
  • The high-pass transportation information system directly collects section information by using probe cars and therefore can offer more reliable information to drivers. However, because the running condition and features of probe cars and statistical processing methods affect the reliability of the information and particularly because the section travel time is greatly influenced by whether there has been delay by signals on urban roads or not, there can be much deviation among the collected individual probe data. Accordingly, researches in multilateral directions are necessary in order to enhance the credibility of the section information. Yet, the precedent studies related to high-pass information provision have been conducted on the highway sections with the feature of continuous flow, which has a limit to be applied to the urban roads with the transportational feature of an interrupted flow. Therefore, this research aims at analyzing the features of high-pass transportation data on urban roads and finding a proper processing method. When the characteristics of the high-pass data on urban roads collected from RSE were analyzed by using a time-space diagram, the collected data was proved to have a certain pattern according to the arriving cars' waiting for signals with the period of the signaling cycle of the finish node. Moreover, the number of waiting for signals and the time of waiting caused the deviation in the collected data, and it was bigger in traffic jam. The analysis result showed that it was because the increased number of waiting for signals in traffic jam caused the deviation to be offset partially. The analysis result shows that it is appropriate to use the mean of this collected data of high-pass on urban roads as its representative value to reflect the transportational features by waiting for signals, and the standard of judgment of delay and congestion needs to be changed depending on the features of signals and roads. The results of this research are expected to be the foundation stone to improve the reliability of high-pass information on urban roads.