• Title/Summary/Keyword: Interpolation Model

Search Result 704, Processing Time 0.029 seconds

The Planning and Design of Agricultural Water Resources Development Project using Digital Topographic Data (수치지형정보를 활용한 농업용수개발 사업의 계획 및 설계)

  • 이재기;이현직;최석근
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.49-59
    • /
    • 1995
  • This thesis is purposed to economical and rational accomplishment of the agricultural water resources development project as to utilize digital topographic information in basic investigation, preliminary planning and detail design process of the agricultural water resources development. In this study, the digital topographic data is acquired to stereo aerial photography of test field and the digital elevation model(DEM) is generated by interpolation of acquired data. Also, the database of basic investigation which is constituted to graphic and at-tribute data is designed. As the results of this study, the method that is determined to this study makes a contribution to effective accomplishment of the agricultural water resources development project.

  • PDF

Objective Interpolation Of the $M_2$ Tide in the East Sea (객관적 방법에 의한 동해의 반일주조 조석도)

  • KANG Yong Q.;CHOI Seog-Won
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.477-483
    • /
    • 1987
  • We constructed the tidal chart of $M_2$ tide in the East Sea (Japan Sea) by an objective method. The sea level elevations at coastal stations are specified as Dirichlet boundary conditions, and the tidal constants inside of the East Sea basin are determined by the solution of the complex partial differential equation for the sea surface elevation. We studied the influences of the bottom topography and the tidal friction on the distribution of tidal chart inside of the basin. Using the results of basin-wide tidal model, we constructed a detailed tidal chart of the Ma tide off east of Korea.

  • PDF

A Study on Performance Diagnostics of Turbo-Shaft Engine For SUAV Using Gas Path Analysis (GPA 기법을 적용한 스마트 무인기용 터보축 엔진의 성능진단에 관한 연구)

  • Lee, Eun-Young;Roh, Tae-Seong;Choi, Dong-Whan;Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.82-89
    • /
    • 2006
  • Recently operation and maintenance cost of gas turbine engines has been issued as a major parameter in terms of designing and manufacturing. Accordingly, the conception that the maintenance and repair of an engine has to be conducted in assembled condition has been spreaded out. However, it is possible only if the prediction of the engine performance is clearly identified. In this study, therefore, a diagnostic code of the engine performance has been developed by using GPA(Gas Path Analysis) and Fuzzy Logic which can analyze the engine performance and estimate the health parameters. The prediction of the quantitative performance deterioration of the established model of the turbo-shaft engine for SUAV has been achieved in a satisfied level compared to that obtained by GSP code.

Uncertainty Analysis of Interzonal Airflow Rates by Tracer Gas Methods (추적가스를 이용한 실간환기량 산정방법에 따른 불확실성 해석)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.529-534
    • /
    • 2008
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

  • PDF

Three-Dimensional Noise Analysis of an Axial-Flow Fan using Computational Aero-Acoustics (공력음향학을 이용한 축류홴의 삼차원 소음 해석)

  • Kim, Joo-Hyung;Kim, Jin-Hyuk;Shin, Seungyeol;Kim, Kwang-Yong;Lee, Seungbae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.5
    • /
    • pp.48-53
    • /
    • 2012
  • This paper presents a systematic procedure for three-dimensional noise analysis of an axial-flow fan by using computational aero-acoustics based on Ffowcs Williams-Hawkings equation. Flow-fields of a basic fan model are simulated by solving three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations using the commercial code ANSYS CFX 11.0. Starting with steady flow results, unsteady flow analysis is performed to extract the fluctuating pressures in the time domain at specified local points on the blade surface of the axial flow fan. The perturbed density wave by rotating blades reaches at the observer position, which is simulated by an in-house noise prediction software based on Ffowcs Williams-Hawkings equation. The detailed far-field noise signatures from the axial-flow fan are analyzed in terms of source types, field characteristics, and interpolation schemes.

Omni-directional Surveillance and Motion Detection using a Fish-Eye Lens (어안 렌즈를 이용한 전방향 감시 및 움직임 검출)

  • Cho, Seog-Bin;Yi, Un-Kun;Baek, Kwang-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.79-84
    • /
    • 2005
  • In this paper, we developed an omni-directional surveillance and motion detection method. The fish-eye lens provides a wide field of view image. Using this image, the equi-distance model for the fish-eye lens is applied to get the perspective and panorama images. Generally, we must consider the trade-off between resolution and field of view of an image from a camera. To enhance the resolution of the result images, some kind of interpolation methods are applied. Also the moving edge method is used to detect moving objects for the object tracking.

Numerical investigations of pile load distribution in pile group foundation subjected to vertical load and large moment

  • Ukritchon, Boonchai;Faustino, Janine Correa;Keawsawasvong, Suraparb
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.577-598
    • /
    • 2016
  • This paper presents a numerical study of pile force distribution in a pile group foundation subjected to vertical load and large moment. The physical modeling of a pile foundation for a wind turbine is analyzed using 3D finite element software, PLAXIS 3D. The soil profile consists of several clay layers, which are modeled as Mohr-Coulomb material in an undrained condition. The piles in the pile group foundation are modeled as special elements called embedded pile elements. To model the problem of a pile group foundation, a small gap is created between the pile cap and underlying soil. The pile cap is modeled as a rigid plate element connected to each pile by a hinge. As a result, applied vertical load and large moment are transferred only to piles without any load sharing to underlying soil. Results of the study focus on pile load distribution for the square shape of a pile group foundation. Mathematical expression is proposed to describe pile force distribution for the cases of vertical load and large moment and purely vertical load.

A Study on Tracer Gas Methodology to Measure Interzonal Airflow Rates (실간환기량 측정을 위한 추적가스 실험방법론에 관한 연구)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.11
    • /
    • pp.606-612
    • /
    • 2009
  • Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Tracer gas techniques are widely used to measure ventilation rates, ventilation effectiveness, and interzonal air movements. Depending on the number of gases used, they are divided into single and multi tracer gas methods. This paper deals with the comparison of the tracer gas methods in measuring air exchange rate between rooms. Experiments have been conducted in a simple two-room model with known airflow rates. In multi-gas procedure, the concentration decays of two tracer gases, i.e SF6 and R134a are measured after simultaneous injections in each room. The single tracer gas method is also applied by injecting SF6 gas with a time lag between two rooms. The data reduction procedures are developed to obtain the interzonal airflow rate using the matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, and smoothing. Uncertainty for each airflow rate is investigated depending on the parameters based on the setting values.

An Experiment on Verification of Multi-Gas Tracer Technique for Air Exchange Rate Between Rooms (실간환기량 측정을 위한 멀티추적가스법의 검증실험)

  • Han, Hwa-Taik;Cho, Seok-Hyo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.99-104
    • /
    • 2007
  • Tracer gas technique is widely used to measure the ventilation rates and/or ventilation effectiveness of building spaces. However, the conventional method using a single tracer gas can measure only outdoor air change rates in a single zone. This paper deals with the multi-gas tracer technique to measure air exchange rates between rooms. Interzonal air movements are important to characterize overall ventilation performance of complicated multi-zone buildings. Experiments are conducted in a simple two-room model with known airflow rates using tracer gases of SF6 and R134a. The concentration decays of two tracer gases are measured after simultaneous injections in each room. The governing equations are derived from the continuity and the mass balance of each room. The data reduction procedure are developed to obtain the inter-room airflow rates using the governing matrix inversion, and various data manipulation methods are tested, such as data shift, interpolation, smoothing, and etc, to improve the estimate and interpretation of the results.

  • PDF

Determination of the Perceived Contrast Compensation Ratio for a Wide Range of Surround Luminance

  • Baek, Ye Seul;Kim, Hong-Suk;Park, Seung-Ok
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.89-94
    • /
    • 2014
  • It is established that the perceived image contrast is affected by surround luminance. In order to get the same perceived image contrast, the optimum surround compensation ratios for those surround conditions is needed. Much research has been performed for dark, dim, and average surrounds. In this study, a wide range of surround luminance from dark up to $2087cd/m^2$ was considered. Using magnitude estimation method, the change in perceived brightness of six test stimuli was measured under seven surround conditions; dark, dim, 2 levels of average, bright, and 2 levels of over-bright surrounds. To drive the perceived image contrast from the perceived brightness, two different definitions of contrast were tested. Their calculated results were compared with the visual data of our previous work. And to conclude, the perceived contrast compensation ratios were 1:1.11:1.2 for average, dim and dark surrounds. These were close to CIECAM02 model (1:1.17:1.31). Besides, for average, bright, over-bright1 and over-bright2 surrounds the ratios 1:1.17:1.42:1.69 were determined. For intermediate or more extreme surround conditions, the compensation ratio was obtained from the linear interpolation or extrapolation.