• Title/Summary/Keyword: Interpolated order statistics

Search Result 4, Processing Time 0.015 seconds

An Improved Method for Constructing Confidence Interval of Median : Small Sample Case

  • Park, Sang-Gue;Choi, Ji-Yun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.973-980
    • /
    • 2004
  • Phase I clinical trials are often pharmacologically oriented and usually attempt to find the best dose of drug to employ. However, other purposes like determination of sizes and types of side effects and toxicity and organ system involved are equally important. Estimation of treatment effects or side effects is usually ignored since it is usually based on too small sample, even though Phase II clinical trials would be designed based on the Phase I studies. Statistical methods for constructing the approximate confidence interval for population median in case of small sample are considered and an improved method is proposed. The proposed estimator is compared with current methods through simulation studies.

  • PDF

Spatially Adaptive Color Demosaicing of Noisy Bayer Data (잡음을 고려한 공간적응적 색상 보간)

  • Kim, Chang-Won;Yoo, Du-Sic;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.86-94
    • /
    • 2010
  • In this paper, we propose spatially adaptive color demosaicing of noisy Bayer data. When sensor noises are not considered in demosaicing, they may degrade result image. In order to obtain high resolution image, sensor noises are considered in the color demosaicing step. We identify flat, edge and pattern regions at each pixel location to improve the performance of the algorithm and to reduce complexity. Based on the pre-classified regions, the demosaicing of the G channel is performed using the local statistics to reduce the interpolation error. The sensor noise is simultaneously removed by a modified version of non-local mean filter in the green and in the color difference domain. The R and B channels are interpolated easily using fully interpolated and denoised G and color difference values. Experimental results show that the proposed method achieves a significant improvement in terms of visual and numerical criteria, when compared to conventional methods.

An Adaptive Occluded Region Detection and Interpolation for Robust Frame Rate Up-Conversion

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.201-206
    • /
    • 2011
  • FRUC (Frame Rate Up-Conversion) technique needs an effective frame interpolation algorithm using motion information between adjacent neighboring frames. In order to have good visual qualities in the interpolated frames, it is necessary to develop an effective detection and interpolation algorithms for occluded regions. For this aim, this paper proposes an effective occluded region detection algorithm through the adaptive forward and backward motion searches and also by introducing the minimum value of normalized cross-correlation coefficient (NCCC). That is, the proposed scheme looks for the location with the minimum sum of absolute differences (SAD) and this value is compared to that of the location with the maximum value of NCCC based on the statistics of those relations. And, these results are compared with the size of motion vector and then the proposed algorithm decides whether the given block is the occluded region or not. Furthermore, once the occluded regions are classified, then this paper proposes an adaptive interpolation algorithm for occluded regions, which still exist in the merged frame, by using the neighboring pixel information and the available data in the occluded block. Computer simulations show that the proposed algorithm can effectively classify the occluded region, compared to the conventional SAD-based method and the performance of the proposed interpolation algorithm has better PSNR than the conventional algorithms.

Spatial Analysis for Mean Annual Precipitation Based On Neural Networks (신경망 기법을 이용한 연평균 강우량의 공간 해석)

  • Sin, Hyeon-Seok;Park, Mu-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.3-13
    • /
    • 1999
  • In this study, an alternative spatial analysis method against conventional methods such as Thiessen method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is presented. It is based on neural network modeling and provides a nonparametric mean estimator and also estimators of high order statistics such as standard deviation and skewness. In addition, it provides a decision-making tool including an estimator of posterior probability that a spatial variable at a given point will belong to various classes representing the severity of the problem of interest and a Bayesian classifier to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented to be used for analyzing a mean annual precipitation filed and classifying the field into dry, normal, and wet subregions. For an example, the whole area of South Korea with 39 precipitation sites is applied. Then, several useful results related with the spatial variability of mean annual precipitation on South Korea were obtained such as interpolated field, standard deviation field, and probability maps. In addition, the whole South Korea was classified with dry, normal, and wet regions.

  • PDF